Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.
Áp dụng BĐT BCS , ta có
\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)
\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)
Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5
2/ Áp dụng bđt AM-GM dạng mẫu số ta được
\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)
\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)
Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)
Vậy ......................................
y = (x² - 1)(x + 3)(x + 5)
= [(x - 1)(x + 5)].[(x + 1)(x + 3)]
= (x² + 4x - 5)(x² + 4x + 3)
= [x² + 4x - 1) - 4].[(x² + 4x - 1) + 4]
= (x² + 4x - 1)² - 16 ≥ - 16
- Khi x = 0 ⇒ y = - 15
- Khi x = 1 ⇒ y = 0
- Khi x² + 4x - 1 = 0 ⇔ x = √5 - 2 ( loại giá trị x = - √5 - 2 < 0) ⇒ y = - 16
Vậy trên đoạn [0; 1] thì :
GTNN của y = - 16 khi x = √5 - 2
GTLN của y = 0 khi x = 1
\(y=\frac{3}{-\left(x-2\right)^2-4}\ge-\frac{3}{4}\)
Dấu "=" xảy ra khi \(x=2\)
\(y=\frac{3-4x}{x^2+1}=\frac{x^2-4x+4}{x^2+1}-1=\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)
\(\Rightarrow y_{min}=-1\) khi \(x=2\)
\(y=\frac{4\left(x^2+1\right)-4x^2-4x-1}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)
\(y_{max}=4\) khi \(x=-\frac{1}{2}\)
b/\(y=\frac{4x^2+6x+10}{x^2+2x+3}\Leftrightarrow\left(y-4\right)x^2+2\left(y-3\right)x+3y-10=0\)
\(\Delta'=\left(y-3\right)^2-\left(y-4\right)\left(3y-10\right)=-2y^2+16y-31\ge0\)
\(\Rightarrow\frac{8-\sqrt{2}}{2}\le y\le\frac{8+\sqrt{2}}{2}\)
Chắc bạn ghi nhầm số nào đó nên kết quả rất xấu
Câu c làm tương tự
Điều kiện \(x\ge-1\) và \(y\ge-2\). Gọi T là tập giá trị của K. Khi đó \(m\in T\) khi và chỉ khi hệ sau có nghiệm :
\(\begin{cases}x-3\sqrt{x+1}=3\sqrt{y+2}-y\\x+y=m\end{cases}\) \(\Leftrightarrow\begin{cases}3\left(\sqrt{x+1}+\sqrt{y+2}\right)=m\\x+y=m\end{cases}\) (1)
Đặt \(u=\sqrt{x+1};v=\sqrt{y+2}\), điều kiện \(u\ge0;v\ge0\)
Thay vào (1), ta được :
\(\begin{cases}3\left(u+v\right)=m\\u^2+v^2=m+3\end{cases}\) \(\Leftrightarrow\begin{cases}u+v=\frac{m}{3}\\uv=\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)\end{cases}\)
Hay u và v là nghiệm của phương trình :
\(t^2-\frac{m}{3}t+\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)=0\)
\(\Leftrightarrow18t^2-6mt+m^2-9m-27=0\) (2)
Hệ (1) có nghiệm x, y thỏa mãn điều kiện \(x\ge-1\) và \(y\ge-2\) khi và chỉ khi (2) có nghiệm không âm, hay :
\(\begin{cases}\Delta'=-9\left(m^2-18m-54\right)\ge0\\S=\frac{m}{3}\ge0\\P=\frac{m^2-9m-27}{18}\ge0\end{cases}\)
\(\Leftrightarrow\frac{9+3\sqrt{21}}{2}\le m\le9+3\sqrt{15}\)
Vậy \(T=\left[\frac{9+3\sqrt{21}}{2};9+3\sqrt{15}\right]\)
Suy ra Max K = \(\frac{9+3\sqrt{21}}{2}\)
Min K = \(9+3\sqrt{15}\)
a/ \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-5\right)^2\ge0\\\left(x-y+4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)^2+\left(y-5\right)^2+\left(x-y+4\right)^2\ge0\)
\(A_{min}=0\) khi \(\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
b/ \(B=x^2y^2-6xy+9+x^2+4x+4-16\)
\(B=\left(xy-3\right)^2+\left(x+2\right)^2-16\ge-16\)
\(B_{min}=-16\) khi \(\left\{{}\begin{matrix}x=-2\\y=-\frac{3}{2}\end{matrix}\right.\)
c/ \(C=x^2+\frac{y^2}{4}+16+xy+8x+4y+\frac{59}{4}y^2-3y+2001\)
\(C=\left(x+\frac{y}{2}+4\right)^2+\frac{59}{4}\left(y-\frac{6}{59}\right)^2+\frac{118050}{59}\ge\frac{118050}{59}\)
\(C_{min}=\frac{118050}{59}\)
d/ \(D=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+36\)
\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)\)
\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)
\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]\ge2.3=6\)
\(D_{min}=6\)
e/ \(E=a^2+\frac{b^2}{4}+\frac{9}{4}+ab-3a-\frac{3b}{2}+\frac{3b^2}{4}-\frac{3b}{2}+2014-\frac{9}{4}\)
\(=\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2011\ge2011\)
\(E_{min}=2011\)
Đáp án C