Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lưa ý pt \(x^2=m^2-m+1\)có nghiệm với x phải #0 vì nếu = 0 thì trùng => sai
nhưng nghiệm \(\left(+,-\right)\sqrt{m^2-m+1}\)luôn #0 rồi khỏi lo
\(y'=6x^2-6\left(m+1\right)x+6m\)
ta có y/y'=\(\left(3m-1\right)x+m^3+m^2+m\)
suy ra y= \(\left(3m-1\right)x+m^3+m^2+m\)là pt của dường thẳng đi qua A và B
de-ta \(=9\left(m+1\right)^2-36m\)
y' có 2 \(n_o\)phân biệt khi m#1
hai hoành độ của hai điểm cực trị là :
\(X=\dfrac{-b\left(+,-\right)\sqrt{deta}}{a}=\)
\(\left[{}\begin{matrix}\dfrac{m+3}{2}\\\dfrac{3m-1}{2}\end{matrix}\right.\)<=>y=\(\left[{}\begin{matrix}2m^3+5m^2+10m+3\\2m^3+11m^2+4m+1\end{matrix}\right.\)(tìm y bằng cách thế x vào pt đường thẳng )
khoảng cách giữa hai điểm AB =\(\sqrt{2}\)
ta có pt : \(2=\left(\dfrac{m+3}{2}-\dfrac{3m-1}{2}\right)^2+\left(2m^3+5m^2+10m-3-\left(2m^3+11m^2-4m+1\right)\right)^2\)
lại sai chỗ nào rồi 0 ra nghiệm , cậu tính lại thử , cách giả là như vậy
5.
\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(y\left(0\right)=-2\) ; \(y\left(\sqrt{2}\right)=-6\) ; \(y\left(\sqrt{3}\right)=-5\)
\(\Rightarrow M=-2\)
câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi
Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?
Đáp án D chứ sao nữa
Câu 2:
$y'=-3x^2+6x+(m-2)=0$
Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$
Hai điểm cực trị cùng dương khi:
\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)
Từ $(1);(2)\Rightarrow -1< m< 2$
Đáp án C.
Câu 2:
Để đths có 2 điểm cực trị thì trước tiên:
$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$
Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$
Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$
$\Leftrightarrow m^2-4< 0$
$\Leftrightarrow -2< m< 2$
Đáp án A.
Câu 1:
Ta có: \(y=x^4-2x^2+2\Rightarrow y'=4x^3-4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Do đó 3 điểm cực trị của đồ thị hàm số là:
\(A(0;2);B(1;1);C(-1;1)\)
\(\Rightarrow \left\{\begin{matrix} AB=\sqrt{(0-1)^2+(2-1)^2}=\sqrt{2}\\ BC=\sqrt{(1--1)^2+(1-1)^2}=2\\ AC=\sqrt{(0--1)^2+(2-1)^2}=\sqrt{2}\end{matrix}\right.\)
Vì \(AB^2+AC^2=BC^2\) nên tam giác $ABC$ là tam giác vuông tại $A$
\(\Rightarrow S_{ABC}=\frac{AB.AC}{2}=\frac{\sqrt{2}.\sqrt{2}}{2}=1\)
Đáp án A
Câu 2:
Để hàm số đạt cực trị tại $x=1$ thì:
\(y'=-3(m^2+5m)x^2+12mx+6=0\) tại $x=1$
hay \(-3(m^2+5m)+12m+6=0\)
\(\Leftrightarrow m^2+m-2=0\)
\(\Leftrightarrow m=1; m=-2\)
Với m=1:
Hàm số trở thành:
\(y=-6x^3+6x^2+6x-6\)
\(y'=-18x^2+12x+6=0\Leftrightarrow x=1; x=-\frac{1}{3}\)
Lập bảng biến thiên ta thấy thỏa mãn
Với m=-2
Hàm trở thành: \(y=6x^3-12x^2+6x-6\)
\(y'=18x^2-24x+6=0\Leftrightarrow x=1; x=\frac{1}{3}\)
Lập bảng biến thiên ta thấy tại $x=1$ đạt cực tiểu nên không thỏa mãn
Vậy m=1
Đáp án A
1.
\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(y\left(0\right)=5;\) \(y\left(1\right)=3;\) \(y\left(2\right)=7\)
\(\Rightarrow y_{min}=3\)
2.
\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{2}\end{matrix}\right.\)
\(f\left(-2\right)=-3\) ; \(y\left(0\right)=-3\) ; \(y\left(-\sqrt{2}\right)=-7\) ; \(y\left(1\right)=-6\)
\(\Rightarrow y_{max}=-3\)
3.
\(y'=\frac{\left(2x+3\right)\left(x-1\right)-x^2-3x}{\left(x-1\right)^2}=\frac{x^2-2x-3}{\left(x-1\right)^2}=0\Rightarrow x=-1\)
\(y_{max}=y\left(-1\right)=1\)
4.
\(y'=\frac{2\left(x^2+2\right)-2x\left(2x+1\right)}{\left(x^2+2\right)^2}=\frac{-2x^2-2x+4}{\left(x^2+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
\(y\left(1\right)=1\) ; \(y\left(-2\right)=-\frac{1}{2}\Rightarrow y_{min}+y_{max}=-\frac{1}{2}+1=\frac{1}{2}\)
Lời giải:
Ta có: \(y'=x^4-3x^2+2=0\Leftrightarrow \left[\begin{matrix} x=\pm 1\\ x=\pm \sqrt{2}\end{matrix}\right.\)
Lập bảng biến thiên, hoặc xét:
\(y''=4x^3-6x\)
\(\Rightarrow \left\{\begin{matrix} y''(1)=-2< 0\\ y''(-1)=2>0\\ y''(\sqrt{2})=2\sqrt{2}>0\\ y''(-\sqrt{2})=-2\sqrt{2}< 0\end{matrix}\right.\)
Do đó các điểm cực tiểu của hàm số là \(x=-1; x=\sqrt{2}\)
Suy ra tổng các giá trị cực tiểu của hàm số :
\(f(-1)+f(\sqrt{2})=\frac{10074}{5}+\frac{4\sqrt{2}}{5}+2016=\frac{20154+4\sqrt{2}}{5}\)
Đáp án B.
Bài 2: Mình nghĩ điều kiện sửa thành $a,b\in\mathbb{N}$ thôi thì đúng hơn.
ĐKĐB $\Leftrightarrow \log_2[(2x+1)(y+2)]^{y+2}=8-(2x-2)(y+2)$
$\Leftrightarrow (y+2)\log_2[(2x+1)(y+2)]=8-(2x-2)(y+2)$
$\Leftrightarrow (y+2)[\log_2[(2x+1)(y+2)]+(2x-2)]=8$
$\Leftrightarrow \log_2[(2x+1)(y+2)]+(2x-2)]=\frac{8}{y+2}$
$\Leftrightarrow \log_2(2x+1)+\log_2(y+2)+(2x+1)-3=\frac{8}{y+2}$
$\Leftrightarrow \log_2(2x+1)+(2x+1)=\frac{8}{y+2}+3-\log_2(y+2)=\frac{8}{y+2}+\log_2(\frac{8}{y+2})(*)$
Xét hàm $f(t)=\log_2t+t$ với $t>0$
$f'(t)=\frac{1}{t\ln 2}+1>0$ với mọi $t>0$
Do đó hàm số đồng biến trên TXĐ
$\Rightarrow (*)$ xảy ra khi mà $2x+1=\frac{8}{y+2}$
$\Leftrightarrow 8=(2x+1)(y+2)$
Áp dụng BĐT AM-GM:
$8=(2x+1)(y+2)\leq \left(\frac{2x+1+y+2}{2}\right)^2$
$\Rightarrow 2\sqrt{2}\leq \frac{2x+y+3}{2}$
$\Rightarrow 2x+y\geq 4\sqrt{2}-3$
Vậy $P_{\min}=4\sqrt{2}-3$
$\Rightarrow a=4; b=2; c=-3$
$\Rightarrow a+b+c=3$
Đáp án B.
2.
\(\Leftrightarrow\left(y+2\right)log_2\left(2x+1\right)\left(y+2\right)=8-\left(2x-2\right)\left(y+2\right)\)
\(\Leftrightarrow log_2\left(2x+1\right)\left(y+2\right)=\frac{8}{y+2}-2x+2\)
\(\Leftrightarrow log_2\left(2x+1\right)+log_2\left(y+2\right)=\frac{8}{y+2}-2x+2\)
\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=-log_2\left(y+2\right)+3+\frac{8}{y+2}\)
\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=log_2\left(\frac{8}{y+2}\right)+\frac{8}{y+2}\)
Xét hàm \(f\left(t\right)=log_2t+t\Rightarrow f'\left(t\right)=\frac{1}{t.ln2}+1>0;\forall t>0\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow2x+1=\frac{8}{y+2}\)
\(\Rightarrow2x=\frac{8}{y+2}-1=\frac{6-y}{y+2}\)
\(\Rightarrow P=2x+y=y+\frac{6-y}{y+2}=y+\frac{8}{y+2}-1\)
\(\Rightarrow P=y+2+\frac{8}{y+2}-3\ge2\sqrt{\frac{8\left(y+2\right)}{y+2}}-3=4\sqrt{2}-3\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\\c=-3\end{matrix}\right.\) \(\Rightarrow a+b+c=3\)
4.
\(xy+y=2\Leftrightarrow xy=2-y\Rightarrow x=\frac{2-y}{y}=\frac{2}{y}-1\)
\(\Rightarrow P=x+y^2=y^2+\frac{2}{y}-1\)
\(\Rightarrow P=y^2+\frac{1}{y}+\frac{1}{y}-1\ge3\sqrt[3]{\frac{y^2}{y.y}}-1=2\)
\(\Rightarrow P_{min}=2\) khi \(x=y=1\)
Đáp án A
Phương pháp:
+) Tính y’ và giải phương trình y' = 0
+) Lập bảng xét dấu của y’ và rút ra kết luận.
+) Điểm x = x0 được gọi là điểm cực tiểu của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu từ âm sang dương.
Cách giải:
Bảng xét dấu y’:
Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu yCT = y(0) = 2