Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Ta có :
Hàm số đã cho có ba điểm cực trị khi m > 0(*)
Khi đó ba điểm cực trị của đồ thị hàm số là
A ( 0 ; m - 1 ) , B ( - m ; - m 2 + m - 1 )
S ∆ A B C = 1 2 y B - y A x c - x B
Kết hợp điều kiện (*) ta có
[Phương pháp trắc nghiệm]
Áp dụng công thức
Kết hợp điều kiện (*) ta có
Chọn B
[Phương pháp tự luận]
Hàm số có 3 điểm cực trị khi m > 0
Ba điểm cực trị là
Gọi I là trung điểm của B C ⇒ I ( 0 ; m - m 2 )
S ∆ A B C = 1 2 A I . B C = m m 2
Chu vi của ∆ A B C là:
Bán kính đường tròn nội tiếp ∆ A B C là:
r = S ∆ A B C p = m m 2 m + m 4 + m
Theo bài ra: r > 1 ⇔ m m 2 m + m 4 + m > 1
⇔ m m 2 ( m + m 4 - m ) m 4 > 1 (vì m > 0 )
So sánh điều kiện suy ra m > 2 thỏa mãn.
[Phương pháp trắc nghiệm]
Sử dụng công thức
Theo bài ra:
So sánh điều kiện suy ra m > 2 thỏa mãn.
\(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow\begin{cases}x=0\\x^2=m\end{cases}\)
Hàm số đã cho có 3 điểm cực trị <=> phương trình y=0 có 3 nghiệm phân biệt và y đổi dấu khi x đi qua các nghiệm đó <=>m>0
- Khi đó 3 điểm cực trị của đồ thị hàm số là :
\(A\left(0;m-1\right);B\left(-\sqrt{m};-m^2=m-1\right);\left(\sqrt{m};-m^2=m-1\right)\)
- \(S_{ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|x_C-x_B\right|=m^2\sqrt{m}\); \(AB=AC=\sqrt{m^4+m},BC=2\sqrt{m}\)
- \(R=\frac{AB.AC.BC}{4S_{ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)\(\Leftrightarrow m^3-2m+1=0\)
\(\Leftrightarrow\begin{cases}m=1\\m=\frac{\sqrt{5}-1}{2}\end{cases}\)
Chọn D
[Phương pháp trắc nghiệm]
Hàm số có 3 điểm cực trị khi m ≠ 0
Áp dụng công thức
ta có: S ∆ A B C = b 2 4 a - b 2 a
⇔ m = ± 2 5 ( thỏa mãn).
Ta có \(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow x=0\) hoặc \(x^2=m\)
Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow\) phương trình y' = 0 có 3 nghiệm phân biệt và y' đổi dấu khi x đi qua các nghiệm đó <=> m > 0. Khi đó 3 điểm cực trị của đồ thị hàm số là :
\(A\left(0;m-1\right);B\left(-\sqrt{m};m^2+m-1\right);C\left(\sqrt{m};-m^2+m-1\right)\)
a) Ta có \(S_{\Delta ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|y_C-y_B\right|=m^2\sqrt{m}\)
\(AB=AC=\sqrt{m^4+m};BC=2\sqrt{m}\)
\(R=\frac{AB.AC.BC}{4S_{\Delta ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)
\(\Leftrightarrow m^3-2m+1=0\Leftrightarrow m=1\) hoặc \(m=\frac{\sqrt{5}-1}{2}\)
Vậy \(m=1;m=\frac{\sqrt{5}-1}{2}\) là giá trị cần tìm
b) Vì B, C đối xứng nhau qua trục tung nên BC luôn vuông góc OA
Do đó O là trực tâm tam giác ABC khi và chỉ khi \(\overrightarrow{OB}.\overrightarrow{AC}=0\)
\(\overrightarrow{OB}\left(-\sqrt{m};-m^2+m-1\right);\overrightarrow{AC}\left(\sqrt{m};-m^2\right)\)
Suy ra \(-m-m^2\left(-m^2+m-1\right)=0\Leftrightarrow m\left(-m^3+m^2-m+1\right)=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m^2+1\right)=0\Leftrightarrow m=0\) hoặc m = 1
Vậy m = 0 hoặc m = 1 là giá trị cần tìm
c) Rõ ràng tam giác ABC cân tại A và truyên tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm của tam giác ABC
<=> \(y_A+2y_B=0\)
\(\Leftrightarrow m-1+2\left(-m^2+m-1\right)=0\)
\(\Leftrightarrow2m^2-3m+3=0\) vô nghiệm
Vậy không tồn tai giá trị m thỏa mãn yêu cầu bài toán
bn ơi cho mk hỏi cái công thức tính S tam giác ABC=1/2|yB-yA|.|yC-yB| ở đâu vậy ạ
\(y'=4x\left(x-m\right)\left(x+m\right)\\ y'=0\Leftrightarrow\begin{cases}x=0\\x=\pm m\end{cases}\)
Với m=0 thì hàm số có 3 cực trị là 0, -m và m
đồ thị hàm số có 3 điểm cực trị \(A\left(0;1\right),M\left(-m;1-m^4\right),N\left(m;1-m^4\right)\)
Nhận thấy \(AM=AN\) nên \(\Delta AMN\) cân tại A với mọi m
Gọi trung điểm MN là \(I\left(0;1-m^4\right)\)
\(\Delta AMN\) vuông cân tại A khi và chỉ khi \(IA=IM=IN\) hay\(IA=IN\)
\(\Leftrightarrow IA=IN\Leftrightarrow\left|m^4\right|=\left|m\right|\Leftrightarrow m=\pm1\) (vì \(m\ne0\))
Chọn A
[Phương pháp trắc nghiệm]
Hàm số có 3 điểm cực trị khi m > 1 3
Áp dụng công thức:
Phương trình đường tròn ngoại tiếp ∆ A B C là:
Thay vào ta có phương trình:
Sử dụng chức năng SOLVE ,
tìm ra nghiệm duy nhất thỏa mãn là m = 3
Chọn B
Ta có :
Hàm số đã cho có ba điểm cực trị khi m > 0(*)
Khi đó ba điểm cực trị của đồ thị hàm số là
A ( 0 ; m - 1 ) , B ( - m ; - m 2 + m - 1 )
S ∆ A B C = 1 2 y B - y A x c - x B
Kết hợp điều kiện (*) ta có
[Phương pháp trắc nghiệm]
Áp dụng công thức
Kết hợp điều kiện (*) ta có