Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\lim\limits_{x\rightarrow1}\frac{\left(\sqrt{3x+1}-\sqrt{x+3}\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}=\lim\limits_{x\rightarrow1}\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{2}{\left(x+1\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}=\frac{2}{2.4}=\frac{1}{4}\)
\(b=\frac{3}{0}=+\infty\)
\(c=\frac{-13}{0}=-\infty\)
Nếu
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x+1}\right)=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}-2\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}\right)\)
\(=+\infty.\left(1-2\right)=-\infty\)
Nếu:
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x+1}\right)=\lim\limits_{x\rightarrow-\infty}x\left(-\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+2\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}\right)\)
\(=-\infty.\left(-1+2\right)=-\infty\)
Lời giải:
a)
\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)
\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)
b)
\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)
\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)
c)
\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)
\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)
d)
\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)
\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)
\(=\frac{-7}{12}\)
Lời giải:
a)
\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)
\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)
b)
\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)
\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)
c)
\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)
\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)
d)
\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)
\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)
\(=\frac{-7}{12}\)
\(a=\lim\limits_{x\rightarrow0}\frac{x^2}{x\left(\sqrt{1+x^2}+1\right)}=\lim\limits_{x\rightarrow0}\frac{x}{\sqrt{1+x^2}+1}=\frac{0}{2}=0\)
\(b=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2+2-\sqrt{5-x^2}}{x-1}=\lim\limits_{x\rightarrow1}\frac{\frac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}+\frac{\left(x-1\right)\left(x+1\right)}{2+\sqrt{5-x^2}}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left(\frac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}+\frac{x+1}{2+\sqrt{5-x^2}}\right)=\frac{1}{12}+\frac{1}{2}=\frac{7}{12}\)
\(c=\lim\limits_{x\rightarrow0}\frac{2x}{x\left(\sqrt[3]{\left(1+x\right)^2}+\sqrt[3]{\left(1+x\right)\left(1-x\right)}+\sqrt[3]{\left(1-x\right)^2}\right)}=\lim\limits_{x\rightarrow0}\frac{2}{\sqrt[3]{\left(1+x\right)^2}+\sqrt[3]{\left(1+x\right)\left(1-x\right)}+\sqrt[3]{\left(1-x\right)^2}}=\frac{2}{3}\)
\(d=\frac{\sqrt[3]{6}}{0}=+\infty\)
Bạn tự hiểu là giới hạn khi x tiến tới 1 nhé
a/\(=lim\frac{\left(x-1\right)\left(x^{2015}+x^{2014}+...+x+1\right)}{\left(x-1\right)\left(x^{2014}+x^{2013}+...+x+1\right)}=lim\frac{x^{2015}+x^{2014}+...+x+1}{x^{2014}+x^{2013}+...+x+1}=\frac{2016}{2015}\)
b/ \(=lim\frac{\left(x-1\right)\left(x^{m-1}+x^{m-2}+...+x+1\right)}{\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)}=lim\frac{x^{m-1}+...+1}{x^{n-1}+...+1}=\frac{m}{n}\)
Hoặc nếu bạn được sử dụng L'Hopital thì cứ việc đạo hàm tử-mẫu, lẹ hơn các trên nhiều