Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn dùng kĩ thuật S,P . đây chỉ là phán đoán thui , vì tớ lướt qua cho vui , bạn thử dc k
Bài 1:
a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)
b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)
\(x\left(x-z\right)+y\left(y-z\right)=0\Leftrightarrow z\left(x+y\right)=x^2+y^2\)
\(P=x-\frac{xz^2}{x^2+z^2}+y-\frac{yz^2}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(P\ge x+y-\frac{xz^2}{2xz}-\frac{yz^2}{2yz}+\frac{x^2+y^2+4}{x+y}\)
\(P\ge x+y-z+\frac{x^2+y^2+4}{x+y}=x+y+\frac{x^2+y^2+4-z\left(x+y\right)}{x+y}=x+y+\frac{4}{x+y}\)
\(P\ge2\sqrt{\frac{4\left(x+y\right)}{x+y}}=4\)
\(P_{min}=4\) khi \(x=y=z=1\)
1) x2-4x+5+y2+2y=0
<=>x2-4x+4+y2+2y+1=0
<=>(x-2)2+(x+1)2=0
<=>x-2=0 và x+1=0
<=>x=2 và x=-1
2)2p.p2-(p3-1)+(p+3)2p2-3p5
<=>2p3-p3+1+2p3+6p2-3p5
<=>3p3+6p2-3p5+1
3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1
=1
4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3
=-18x2+3(đề sai)
b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x
=16
Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x
5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0
b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0
6)M+(12x4-15x2y+2xy2+7)=0
<=>M =-(12x4-15x2y+2xy2+7)
<=>M =-12x4+15x2y-2xy2-7
câu 1.
P= 2(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2
P= (x+y+x-y)^2-(2y)^2
P=(2x-2y)(2x+2y)
P=4(x^2-y^2)
câu 2.
a, x^3-2x^2-4xy^2+x= x(x^2-2x+1)-4xy^2
=x(x-1)^2-4xy^2
=x(x-1-2y)(x-1+2y)
b, (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4)(x^2+5x+6)-24
Đặt x^2+5x+4= a
Lúc đó: (x+1)(x+2)(x+3)(x+4)-24= a(a+2)-24
= a^2+2a-24
=a^2+2a+1-25
= (a+1)^2-5^2
= (a+1-5)(a+1+5)
= (a-4)(a+6)
mà ta đặt x^2+5x+4=a => (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4-4)(x^2+5x+4+6)
= (x^2+5x)(x^2+5x+10)
câu3. (x+2)^2= 4-x^2
=> (x+2)^2-4+x^2=0
=>. (x+2)^2-(2-x)(2+x)=0
=> (x+2)(x+2-2+x)=0
=> (x+2)2x=0
=> x+2=0 hoặc 2x=0
=> x=-2 hoặc x=0
1)P=2(x^2-y^2)+x^2-2xy+y^2+x^2+2xy+y^2-4y^2=2x^2-2y^2+2x^2+2y^2-4y^2=4x^2-4y^2 . 3) <=> x^2+4x+4-4+x^2=0
<=> 2x^2+4x=0 <=>2x(x+2)=0 <=>2x=0 hay x+2=0 <=>x=0 hay x=-2
Câu 3 :
( x + 2 ) 2 = 4 - x 2
\(\Leftrightarrow\) ( x + 2 ) 2 = ( 2 - x ) ( 2 + x )
\(\Leftrightarrow\) ( x + 2 ) 2 - ( 2 - x ) ( 2 + x ) = 0
\(\Leftrightarrow\) ( x + 2 ) ( x + 2 - 2 + x ) = 0
\(\Leftrightarrow\) 2x . ( x + 2 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy phương trình có nghiệm x = 0 hoặc x = -2 .
a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)
\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)
\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)
\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)
\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)
\(=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=x^2y^2-y+x^2+y^2-x^2y+1\)
\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)
\(=\left(x^2+1\right)\left(y^2-y+1\right)\)
=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)
Dấu = xảy ra khi y=3/8
Bài 1:
\(x^2=4y-4; y^2=4z-4; z^2=4x-4\)
\(\Rightarrow x^2+y^2+z^2=4y-4+4z-4+4x-4\)
\(\Leftrightarrow (x^2-4x+4)+(y^2-4y+4)+(z^2-4z+4)=0\)
\(\Leftrightarrow (x-2)^2+(y-2)^2+(z-2)^2=0\)
Vì \((x-2)^2; (y-2)^2; (z-2)^2\geq 0, \forall x,y,z\)
Do đó để tổng của chúng bằng $0$ thì:
\((x-2)^2=(y-2)^2=(z-2)^2=0\Rightarrow x=y=z=2\)
\(\Rightarrow M=(2-3)^2+(2-4)^3+(2-5)^4+100=174\)
Bài 2:
Ta có:
\(x^2+y^2+1=xy+x+y\)
\(\Rightarrow 2x^2+2y^2+2=2xy+2x+2y\)
\(\Leftrightarrow (x^2-2x+1)+(y^2-2y+1)+(x^2+y^2-2xy)=0\)
\(\Leftrightarrow (x-1)^2+(y-1)^2+(x-y)^2=0\)
Vì \((x-1)^2; (y-1)^2; (x-y)^2\geq 0, \forall x,y\). Do đó để tổng của chúng bẳng $0$ thì:
\((x-1)^2=(y-1)^2=(x-y)^2=0\)
\(\Rightarrow x=y=1\)
Do đó:
\(M=x^2+y^3=1^2+1^3=2\)
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16