K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CÁCH 1 : A = \(\dfrac{235}{11}-\left(\dfrac{8}{5}+\dfrac{81}{11}\right)\)

A = \(\dfrac{235}{11}-\left(\dfrac{88}{55}+\dfrac{405}{55}\right)\)

A = \(\dfrac{235}{11}-\dfrac{493}{55}\)

A = \(\dfrac{1175}{55}+\dfrac{493}{55}\)

A = \(\dfrac{1668}{55}\)

22 tháng 3 2017

\(a)\dfrac{3}{4}-\dfrac{-5}{2}-\dfrac{7}{-24}\)

\(=\dfrac{13}{4}-\dfrac{7}{-24}\)

\(=\dfrac{85}{24}\)

\(b)\dfrac{4}{7}+\dfrac{-5}{8}-\dfrac{3}{28}\)

\(=\dfrac{-3}{56}-\dfrac{3}{28}\)

\(=\dfrac{-9}{56}\)

\(c)\dfrac{7}{36}-\dfrac{8}{-9}+\dfrac{-2}{3}\)

\(=\dfrac{13}{12}\)\(+\dfrac{-2}{3}\)

\(=\dfrac{5}{12}\)

\(d)\dfrac{-1}{2}+\dfrac{3}{7}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)

\(=\dfrac{-1}{14}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)

\(=\dfrac{-23}{126}+\dfrac{-7}{18}+\dfrac{4}{7}\)

\(=\dfrac{-4}{7}+\dfrac{4}{7}\)

\(=0\)

\(e)\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)

\(=\dfrac{-5}{56}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)

\(=\dfrac{83}{56}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)

\(=\dfrac{305}{168}+\dfrac{1}{7}+\dfrac{5}{-8}\)

\(=\dfrac{47}{24}+\dfrac{5}{-8}\)

\(=\dfrac{4}{3}\)

22 tháng 3 2017

Bài 2 : Tính

a) \(\dfrac{3}{4}-\dfrac{-5}{2}-\dfrac{7}{-24}\)

\(=\dfrac{18}{24}-\dfrac{-60}{24}-\dfrac{-4}{24}\)

\(=\dfrac{18-\left(-60\right)-\left(-7\right)}{24}\)

\(=\dfrac{85}{24}\)

b) \(\dfrac{4}{7}+\dfrac{-5}{8}-\dfrac{3}{28}\)

\(=\dfrac{32}{56}+\dfrac{-35}{56}-\dfrac{6}{56}\)

\(=\dfrac{32+\left(-35\right)-6}{56}\)

\(=\dfrac{-9}{56}\)

c) \(\dfrac{7}{36}-\dfrac{8}{9}+\dfrac{-2}{3}\)

\(=\dfrac{7}{36}-\dfrac{32}{36}+\dfrac{-24}{36}\)

\(=\dfrac{7-32+\left(-24\right)}{36}\)

\(=\dfrac{-49}{36}\)

d) \(\dfrac{-1}{2}+\dfrac{3}{7}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)

\(=\dfrac{-9}{18}+\dfrac{3}{7}-\dfrac{2}{18}+\dfrac{-7}{18}+\dfrac{4}{7}\)

\(=\left(\dfrac{-9}{18}+\dfrac{-7}{18}-\dfrac{2}{18}\right)+\left(\dfrac{3}{7}+\dfrac{4}{7}\right)\)

\(=\left(-1\right)+1\)

\(=0\)

e) \(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)

\(=\left(\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{11}{7}\right)+\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\dfrac{1}{3}\)

\(=2+\left(-1\right)+\dfrac{1}{3}\)

\(=1+\dfrac{1}{3}\)

\(=\dfrac{4}{3}\)

a: \(=\dfrac{32}{9}+\dfrac{13}{6}=\dfrac{32\cdot2+13\cdot3}{18}=\dfrac{64+39}{18}=\dfrac{103}{18}\)

b: \(=\dfrac{43}{8}-\dfrac{43}{6}=\dfrac{-43}{24}\)

c:\(=4-2-\dfrac{1}{6}=2-\dfrac{1}{6}=\dfrac{11}{6}\)

d: \(=5+\dfrac{2}{3}+7+\dfrac{1}{2}-3-\dfrac{1}{2}+1+\dfrac{2}{3}\)

\(=10+\dfrac{4}{3}=\dfrac{34}{3}\)

31 tháng 3 2017

a;\(\dfrac{-6}{11}\) : \(\dfrac{12}{55}\) = \(\dfrac{-5}{2}\)

b;\(\dfrac{7}{12}\) + \(\dfrac{5}{72}\) - \(\dfrac{11}{36}\) = \(\dfrac{47}{72}\) - \(\dfrac{11}{36}\) = \(\dfrac{25}{72}\)

c;\(\dfrac{13}{10}\) : \(\dfrac{-5}{13}\) = \(\dfrac{-169}{50}\)

d; {\(\dfrac{5}{12}\) + \(\dfrac{5}{11}\) } : { \(\dfrac{5}{3}\) -\(\dfrac{7}{11}\) } = \(\dfrac{115}{132}\) : \(\dfrac{34}{33}\) = \(\dfrac{115}{136}\)

lưu ý mk ko chép đầu bài

31 tháng 3 2017

mình cần gấp lắm đến chiều mai là phải nộp rùi

giúp mình nha thanks cá bạn trước vuiko có tâm trạng mà cười nữalolanglimdim

20 tháng 5 2017

Các biểu thức ở mỗi câu trên đều bằng nhau

8 tháng 6 2017

a)\(10^2+11^2+12^2=100+121+144=365\);
\(13^2+14^2=169+196=365\)
Vì vậy \(10^2+11^2+12^2=13^2+14^2\).
b) \(\left(30+25\right)^2=55^2=3025\).
c) \(37.\left(3+7\right)=37.10=3700\); \(3^3+7^3=370\)
Vì vậy: \(37.\left(3+7\right)=3^3+7^3\).
d) Tương tự: \(48.\left(4+8\right)=4^3+8^3\).

23 tháng 3 2017

a) A = 3/7

b) B = 73/13

c) C = 37/7

d) D = 12

ba câu a) ,b) ,c) bn đổi ra hỗn số giúp mk nha

tick cho tớ nha

4 tháng 4 2017

sai câu A với B kìa bạn

b: \(A=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)

\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)

\(=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)

c: \(C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)

=1-1/16=15/16

28 tháng 11 2016

\(8-12x+6x^2-x^3\)

\(=\left(2-x\right)^3\)

\(125x^3-75x^2+15x-1\)

\(=\left(5x-1\right)^3\)

\(x^2-xz-9y^2+3yz\)

\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-z\right)\)

\(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

\(x^3+2x^2-6x-27\)

\(=x^3+5x^2+9x-3x^2-15x-27\)

\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)

\(=\left(x-3\right)\left(x^2+5x+9\right)\)

\(12x^3+4x^2-27x-9\)

\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)

\(=\left(3x+1\right)\left(4x^2-9\right)\)

\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)

\(4x^4+4x^3-x^2-x\)

\(=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=x\left(x+1\right)\left(4x^2-1\right)\)

\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)

b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)

\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)

mà \(10^7-8< 10^8-7\)

nên A>B

c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)

\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)

mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)

nên A<B

13 tháng 3 2018

a,A<B

b,A,<B

c,A<B

13 tháng 3 2018

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B