Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thực hiện phép tính
\(\left(\frac{1}{x^2-9}+\frac{2}{3-x}+\frac{3}{x+3}\right)\div\frac{x-14}{x+3}\)
\(\left(\frac{1}{x^2-9}+\frac{2}{3-x}+\frac{3}{x+3}\right)\div\frac{x-14}{x+3}\)
\(=\left(\frac{1}{\left(x+3\right)\left(x-3\right)}+\frac{-2}{x-3}+\frac{3}{x+3}\right)\div\frac{x-14}{x+3}\)
\(=\left(\frac{1}{\left(x+3\right)\left(x-3\right)}+\frac{-2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right)\div\frac{x-14}{x+3}\)
\(=\left(\frac{1-2x-6+3x-9}{\left(x+3\right)\left(x-3\right)}\right).\frac{x+3}{x-14}\)
\(=\frac{x-14}{\left(x+3\right)\left(x-3\right)}.\frac{x+3}{x-14}=\frac{1}{x-3}\)
Thực hiện phép tính
\(\left(\frac{1}{x^2-9}+\frac{2}{3-x}+\frac{3}{x+3}\right)\div\frac{x-14}{x+3}\)
\(\left(\frac{1}{x^2-9}+\frac{2}{3-x}+\frac{3}{x+3}\right):\frac{x-14}{x+3}\)
\(=\left(\frac{1}{\left(x+3\right)\left(x-3\right)}+\frac{-2}{x-3}+\frac{3}{x+3}\right):\frac{x-14}{x+3}\)
\(=\left(\frac{1}{\left(x+3\right)\left(x-3\right)}+\frac{-2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right).\frac{x+3}{x-14}\)
\(=\left(\frac{1-2x-6+3x-9}{\left(x-3\right)\left(x+3\right)}\right).\frac{x+3}{x-14}=\frac{x-14}{\left(x+3\right)\left(x-3\right)}.\frac{x+3}{x-14}\)
\(=\frac{1}{x-3}\)
b) (ko chép lại đề nhé) \(=\frac{x^2\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\cdot\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x^2-xy+y^2\right)}=\frac{x\left(x-y\right)}{y}\)
Đơn thức đầu tiên trong mẫu của phân thức thứ 2 có lẽ là \(x^3y\)
a,
\(\dfrac{18\left(x-y\right)^{10}}{2\left(x-y\right)^5}=9\left(x-y\right)^5\)
b, \(\dfrac{10\left(x-2\right)^{12}}{\left(2-x\right)^{10}}=\dfrac{10\left(x-2\right)^{12}}{\left(x-2\right)^{10}}=10\left(x-2\right)^2\)
c, \(\dfrac{-18\left(x-3\right)^5}{2\left(3-x\right)^3}=\dfrac{-18\left(x-3\right)^5}{-2\left(x-3\right)^3}=9\left(x-3\right)^2\)
d,\(\dfrac{x^2-6x+9}{x-3}=\dfrac{\left(x-3\right)^2}{x-3}=x-3\)
e, \(\dfrac{x^2-x-2}{x+1}=\dfrac{x^2-2x+x-2}{x+1}=\dfrac{\left(x-2\right)\left(x+1\right)}{x+1}=x-2\)
1: \(=\left(x-1\right)^2\)
2: \(x\in\left\{0;20\right\}\)
Câu 13:
\(1,=\left(x-1\right)^2\\ 2,\Leftrightarrow x\left(x-20\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=20\end{matrix}\right.\\ 3,\text{Đề lỗi}\)
Câu 14:
\(1,ĐK:x\ne-2\\ 2,=\dfrac{\left(x+2\right)^2}{x+2}=x+2\\ 3,\Leftrightarrow x+2=0\Leftrightarrow x=-2\left(ktm\right)\Leftrightarrow x\in\varnothing\)
Câu 16:
\(A=x^2-4x+4+20=\left(x-2\right)^2+20\ge20\)
Dấu \("="\Leftrightarrow x=2\)