Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Số vân sáng của bức xạ đơn sắc 1 thu được trên màn
Số vân sáng của bức xạ đơn sắc 2 thu được trên màn
Xét sự trùng nhau của hai bức xạ
Số vân sáng trùng nhau của hai bức xạ là
Số vân sáng quan sát được trên màn là N = N1 + N2 – Ntr = 11 + 7 – 3 = 15 vân sáng
- Số vân sáng của bức xạ đơn sắc 1 thu được trên màn:
- Số vân sáng của bức xạ đơn sắc 2 thu được trên màn:
- Xét sự trùng nhau của hai bức xạ:
→ Số vân sáng trùng nhau của hai bức xạ là:
- Số vân sáng quan sát được trên màn là
Đáp án B
Xét các tỉ số :
+ A B i 1 = 6 , 72 0 , 48 = 14 → trên đoạn AB có 15 vị trí cho vân sáng của bức xạ λ 1
+ A B i 2 = 6 , 72 0 , 64 = 10 , 5 → trên đoạn AB có 11 vị trí cho vân sáng của bức xạ λ 2
→ Điều kiện trùng nhau của hai hệ vân sáng: k 1 k 2 = i 2 i 1 = 4 3
Vì việc lặp lại có tính tuần hoàn của hệ vân nên nếu ta xem tại A là vân trung tâm thì tại B là vân sáng bậc 13 của bức xạ λ 1 và vân tối bậc 10 của bức xạ λ 2
Trên đoạn này có 4 vị trí trùng nhau của hai bức xạ ứng với k 1 = 0, 4, 8, 12
Vậy số vân sáng quan sát được là 15 + 11 – 4 = 22.
Đổi đơn vị: \(\lambda_1=450n m= 0,45 \mu m.\)
\(\lambda_1=600n m= 0,6 \mu m.\)
Hai vân sáng trùng nhau khi \(k_1i_1=k_2i_2 \)
<=> \(\frac{k_1}{k_2}= \frac{i_1}{i_2}=>\frac{k_1}{k_2}= \frac{\lambda_1}{\lambda_2} =\frac{3}{4}\ \ (*)\)
Xét trong đoạn MN nên \(5,5 mm \leq x_s \leq 22mm. \)
<=> \(5,5 mm \leq k_1\frac{\lambda_1 D}{a} \leq 22mm. \)
<=> \(\frac{5,5.a}{\lambda_1 D} \leq k_1\leq \frac{22.a}{\lambda_1 D}\)
Giữ nguyên đơn vị của a = 0,5 mm; D = 2m; \(\lambda_1=0,45 \mu m.\)
<=> \(3,055 \leq k_1 \leq 12,22\)
Kết hợp với (*) ta có \(k_1\) chỉ có thể nhận giá trị : 3x2= 6; 3x3 = 9; 3x4 =12.
Như vậy có 3 vị trí trùng nhau của hai bức xạ trong đoạn MN.
Đáp án D
Phương pháp: Coi sự giao thoa trùng vân giống như giao thoa ánh sáng đơn sắc, ta đi tìm khoảng vân trùng nhau.
Cách giải:
Vị trí vân sáng và vân tối thỏa mãn điều kiện :
Vì vân sáng trùng với vị trí vân tối nên ta có:
Coi đây là hiện tượng giao thoa với khoảng vân trùng nhau là:
Số vân trùng nhau trong khoảng MN thỏa mãn điều kiện :
Vậy có 15 giá trị k thỏa mãn
Phương pháp: Sử dụng lí thuyết bài toán giao thoa nhiều ánh sáng
Cách giải:
Số vân sáng của bức xạ đơn sắc 1 thu được trên màn
Số vân sáng của bức xạ đơn sắc 2 thu được trên màn
Xét sự trùng nhau của hai bức xạ
Số vân sáng trùng nhau của hai bức xạ là
Số vân sáng quan sát được trên màn là N = N1 + N2 – Ntr = 11 + 7 – 3 = 15 vân sáng
Chọn A