Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3=VP\)
2) \(VP=x^2+xy-xy-y^2=x^2-y^2=VT\)
3) \(VP=x^2+2\cdot x\cdot1+1=x^2+2x+1=VT\)
4) \(VP=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3=VT\)
1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\\ x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3\\ x^3+y^3=x^3+y^3\left(đúng\right)\)Vậy ta được đpcm
2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\\ x^2-y^2=x^2+xy-xy-y^2\\ x^2-y^2=x^2-y^2\left(đúng\right)\)Vậy ta được đpcm
3, \(x^2+2x+1=\left(x+1\right)^2\\ x^2+2x+1=\left(x+1\right)\left(x+1\right)\\ x^2+2x+1=x^2+x+x+1\\ x^2+2x+1=x^2+2x+1\left(đúng\right)\)Vậy ta được đpcm
4, \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\\ x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\\ x^3-y^3=x^3-y^3\left(đúng\right)\)Vậy ta được đpcm
\(x^2+y^2-xy\ge x+y-1\)
\(\Leftrightarrow2x^2+2y^2-2xy\ge2x+2y-2\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2\ge0\)
Bat ddang thuc cuoiđung,cac phep biendddooii tren la tuong dduong nen BĐT cuoi ddung =>đpcm
xay ra--ddang--thuc khi x=y=1
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x^3+x^2y+xy^2-yx^2-xy^2-y^3\right)\)\(-\left(x^3-x^2y+xy^2+yx^2-xy^2+y^3\right)\)
\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3-x^3+x^2y-xy^2-yx^2+xy^2-y^3\)
\(=-2y^3\)
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=-2y^3\)
\(x-y.x^2+xy+y^2-x-y.x^2-xy+y^2=-2y^3\)
\(\left(x+x-x-x\right)-\left(y.y-y\right).\left(x^2.x^2\right)+\left(y^2+y^2\right)=-2y^3\)
\(0-\left(2y-y\right).x^4+2y^2=-2y^3\)
\(0-y.x^4+2y^2=-2y^3\)
\(-y.y^2.x^4+2=-2y^3\)
\(-y^3.x^4+2=-2y^3\)
hình như mk lm sai mk sẽ lm lại cách # thử
\(x^2+y^2+1\ge xy+x+y\\ \Leftrightarrow2x^2+2x^2+2\ge2xy+2y+2y\\ \Leftrightarrow2x^2+2y^2+2-2xy-2x-2y\ge0\\ \Leftrightarrow x^2+x^2+y^2+y^2+1+1-2xy-2x-2y\ge0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\left(true\right)\)
\(\Rightarrow x^2+y^2+1\ge xy+x+y\) luôn đúng với mọi x;y
Lời giải:
Ta có:
$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$
$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$
$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$
$=2(x^2+y^2+xy)^2$
Ta có đpcm.
Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)
(vì \(xy\ne0\Rightarrow x,y\ne0\))
\(\Rightarrow x-1\ne0;y-1\ne0\)
\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)
\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)
\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)
\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)
\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
cuối VT không đóng ngoặc hả
Lớn rùi mở không đóng thì chết!