Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y\sqrt{5}=\sqrt{\frac{29}{36}-\frac{1}{3}\sqrt{5}}\)
<=> \(6\left(x+y\sqrt{5}\right)=\sqrt{29-12\sqrt{5}}\)
<=>\(6\left(x+y\sqrt{5}\right)=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
<=> \(\left(6x+3\right)=2\sqrt{5}\left(1-3y\right)\)
Mà x,y là số hữu tỉ
=> \(\hept{\begin{cases}6x+3=0\\1-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
Lời giải:
Đặt $xy=a; x+y=b$ thì ta có: \(\left\{\begin{matrix} b^2-2a=4\\ b^2\geq 4a\end{matrix}\right.\)
$A=\frac{xy}{x+y+2}=\frac{a}{b+2}=\frac{b^2-4}{2(b+2)}=\frac{b-2}{2}$
Từ $b^2\geq 4a$. Thay $4a=2(b^2-4)$ có:
$b^2\geq 2(b^2-4)$
$\Leftrightarrow b^2\leq 8\Rightarrow b\leq 2\sqrt{2}$
Do đó: $A=\frac{b-2}{2}\leq \frac{2\sqrt{2}-2}{2}=\sqrt{2}-1$
Vậy $A_{\max}=\sqrt{2}-1$
\(P=\frac{x\left(x+y+z\right)+yz}{y+z}+\frac{y\left(x+y+z\right)+zx}{z+x}+\frac{z\left(x+y+z\right)+xy}{x+y}\)
\(P=\frac{\left(x+y\right)\left(x+z\right)}{y+z}+\frac{\left(x+y\right)\left(y+z\right)}{z+x}+\frac{\left(x+z\right)\left(y+z\right)}{x+y}\)
\(P\ge\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=2\left(x+y+z\right)=2\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)
Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)
Khi đó
\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)
Dấu bằng xảy ra khi x=y=z=1
Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1
@Hưng Ninja đéo cần bạn trả lời nhé