K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Ta có: \(\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(a+b\right)\left(b+c\right)\left(a-c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left[\left(a-b\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\right]+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(ab-ac-b^2+bc+ab+ac+b^2+bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(2ab+2bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=2b.\left(a-c\right).\left(a+c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a+c\right)\left[2b\left(a-c\right)+\left(a+b\right)\left(c-b\right)\right]\)

    \(=\left(a+c\right)\left(2ab-2bc+ac-ab+bc-b^2\right)\)

    \(=\left(a+c\right)\left(ab-bc+ac-b^2\right)\)

    \(=\left(a+c\right)\left[a.\left(b+c\right)-b.\left(b+c\right)\right]\)

    \(=\left(a+c\right)\left(a-b\right)\left(b+c\right)\)

28 tháng 8 2020

Ta có: \(\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(a+b\right)\left(b+c\right)\left(a-c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left[\left(a-b\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\right]+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(ab-ac-b^2+bc+ab+ac+b^2+bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(2ab+2bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=2b.\left(a-c\right).\left(a+c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a+c\right)\left[2b\left(a-c\right)+\left(a+b\right)\left(c-b\right)\right]\)

    \(=\left(a+c\right)\left(2ab-2bc+ac-ab+bc-b^2\right)\)

    \(=\left(a+c\right)\left(ab-bc+ac-b^2\right)\)

    \(=\left(a+c\right)\left[a.\left(b+c\right)-b.\left(b+c\right)\right]\)

    \(=\left(a+c\right)\left(a-b\right)\left(b+c\right)\)

11 tháng 3 2018

A= bc(a+d)(b-c) +ac(b+d)(c-a) + ab(c+d)(a-b) 
A= bc(ab+ bd -ac -dc ) + ac(bc+cd -ab-ad )+ab(ac+ad-bc-bd) 
A=(ab²c + b²cd -abc² -bdc² ) + (abc² + adc² -a²bc -a²cd ) + (a²bc + a²bd - ab²c -ab²d) 
A= (ab²c + cb²d -ab²c-ab²d) + (c²ab -abc² -bdc² +adc² ) + ( a²bd +a²bc -a²bc -a²cd) 
A= a²(bd-cd) + b²(cd-ad) + c²(ad-bd) 
A=a²d(b-c) + b²d(c-a) + c²d(a-b) 
A=d(a²b-a²c + b²c-b²a +c²a-c²b) 
A=d[b(a²-c²) + c(b²-a²) + a(c² - b²)] 

17 tháng 3 2018

gimf mk nha

18 tháng 8 2019

Trả lời

P=(a+b+c)3-(a+b-c)3-(b+c-a)3-(c+a-b)3

Đặt a+b-c=x,    b+c-a=y,    c+a-b=z

=>(a+b+c)3-x3-y3-z3

Có x+y+z=a+b-c+b+c-a+c+a-b=a+b+c

=>(x+y+z)3-x3-y3-z3

=>[ (x+y)+z3 ]-x3-y3-z3

=>(x+y)3+z3+3z(x+y) (x+y+z)-x3-y3-z3

=>x3+y3+3xy(x+y)+z3+3z(x+y) (x+y+z)-x3-y3-z3

=>3(x+y) (xy+xz+yz+z2)

=>3(x+y)[x(y+z)+z(y+z)]

=3(x+y) (y+z) (x+z)

Áp dụng hằng đẳng thức trên ta có:

3(a+b-c+b+c-a) (b+c-a+c+a-b) (a+b-c+c+a-b)

=3.2b.2c.2a

=24abc

mk sẽ chỉ hướng để bạn làm bài

đầu tiên ta sẽ nhóm [ (a+b+c)3-(a+b+c)3 ]   ở đây ta thấy có hằng đẳng thức

                                 - [ (b+c-a)3 + ( c+a-b)3 ]    đây cũng vậy 

                sau khi khai triển ta sẽ rút gọn sẽ có nhân tử là  2c 

31 tháng 10 2018

\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)=a^3\left(b-c\right)+b^3c-b^3a+c^3a-c^3b\\ \)

\(\Rightarrow\)\(a^3\left(b-c\right)+bc\left(b^2-c^2\right)-a\left(b^3-c^3\right)\)

\(\Rightarrow\)\(a^3\left(b-c\right)+bc\left(b-c\right)\left(b+c\right)-a\left(b-c\right)\left(b^2+bc+c^2\right)\)

\(\Rightarrow\)\(\left(b-c\right)\left(a^3+bc\left(b+c\right)-a\left(b^2+bc+c^2\right)\right)\)

\(\Rightarrow\)\(\left(b-c\right)\left(a^3+b^2c+bc^2-ab^2-abc-ac^2\right)\)

\(\Rightarrow\)\(\left(b-c\right)\left(bc\left(c-a\right)+b^2\left(c-a\right)-a\left(c^2-a^2\right)\right)\)

\(\Rightarrow\)\(\left(b-c\right)\left(c-a\right)\left(bc+b^2-a\left(c+a\right)\right)\)

\(\Rightarrow\)\(\left(b-c\right)\left(c-a\right)\left(bc+b^2-ac-a^2\right)\)

\(\left(b-c\right)\left(c-a\right)\left(b^2-a^2+c\left(b-a\right)\right)=\left(b-c\right)\left(c-a\right)\left(b-a\right)\left(a+b+c\right)\)

1 tháng 8 2019

\(A=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)

\(A=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)

\(A=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]\)

\(A=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)

1 tháng 8 2019

Auto cách khác:3

\(A=a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(c+b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

1 tháng 8 2019

đặt a-b=x

    b-c=y

    c-a=z

x+y+z=0 => x+y=-z <=> x^3 + y^3 +3xy(x+y) =-z^3 <=> x^3 +y^3 +z^3 =3xyz ( vì x+y=-z)

thế vào pt B = 3(a-b)(b-c)(c-a) 

k mình nha đúng nhất nè :)))))))))))))))