Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a^2+ab+b^2=\left(a+b\right)^2-ab\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3\left(a+b\right)^2}{4}\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}\left(a+b\right)}{2}\)
Tương tự : \(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}\left(b+c\right)}{2}\) ; \(\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}\left(c+a\right)}{2}\)
Suy ra : \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}}{2}.2.\left(a+b+c\right)=\sqrt{3}\)
Vậy MIN B = \(\sqrt{3}\) \(\Leftrightarrow\begin{cases}a+b+c=1\\a=b=c\end{cases}\)
\(\Leftrightarrow a=b=c=\frac{1}{3}\)
bạn vào đây tham khảo nè
Câu hỏi của Tuấn Anh - Toán lớp 9 | Học trực tuyến
hơi lằng nhằng 1 chút
\(P=\frac{a}{\sqrt{a+2c}+1}+\frac{b}{\sqrt{b+2a}+1}+\frac{c}{\sqrt{c+2b}+1}\)
áp dụng cô si ta có:
\(\left(\sqrt{a+2c}+1\right)^2\le2\left(a+2c+1\right)=2\left(2a+b+3c\right)\)
tương tự \(\Rightarrow P\ge\frac{a}{\sqrt{2\left(2a+b+3c\right)}}+\frac{b}{\sqrt{2\left(2b+c+3a\right)}}+\frac{c}{\sqrt{2\left(2c+a+3b\right)}}\)
mà \(\sqrt{2\left(2a+b+3c\right)}\le\frac{2a+b+3c+2}{2}=\frac{4a+3b+5c}{2}\)
\(\Rightarrow P\ge\frac{2a}{4a+3b+5c}+\frac{2b}{4b+3c+5a}+\frac{2c}{4c+3a+5b}\)
\(=\frac{2a^2}{4a^2+3ab+5ac}+\frac{2b^2}{4b^2+3bc+5ab}+\frac{2c^2}{4c^2+3ac+5bc}\ge\frac{2\left(a+b+c\right)^2}{4\left(a+b+c\right)^2}=\frac{1}{2}\)
Áp dụng Bunhiacopxki :
\(A^2=\left(\sqrt{a+b}.1+\sqrt{b+c}.1+\sqrt{c+a}.1\right)^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right).\)
\(\Rightarrow A^2\le6\left(a+b+c\right)=6.1=6\)
\(\Rightarrow A\le\sqrt{6}.\)
Vậy giá trị lớn nhất của \(A=\sqrt{6}\)\(\Leftrightarrow\hept{\begin{cases}a+b+c=1\\a=b=c\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)
Áp dụng BĐT Cauchy ta được \(2\sqrt{bc}\le b+c\)=> \(\frac{a^2}{a+\sqrt{bc}}\ge\frac{2a^2}{2a+b+c}\)
Áp dụng BĐT tương tự ta được đẳng thức
\(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+c+a}+\frac{2c^2}{2c+a+b}\)
Áp dụng BĐT Cauchy ta lại có
\(\frac{2a^2}{2a+b+c}+\frac{2a+b+c}{8}\ge a;\frac{2b^2}{2b+a+c}+\frac{2b+a+c}{8}\ge b;\frac{2c^2}{2c+a+b}+\frac{2c+a+b}{8}\ge c\)
Cộng theo vế ta được
\(\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+a+c}+\frac{2c^2}{2c+a+b}\ge\frac{3}{2}\)
Vậy MinP=\(\frac{3}{2}\)
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
áp dụng bunhia - cốpxki
\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\)
\(=6.2021=12126< =>P=\sqrt{12126}\)
vậy MAX P=\(\sqrt{12126}\)
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
Áp dụng BĐT Bunyakovsky ta có:
\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)
\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)
Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)
Ta có: \(a\sqrt{b}+b\sqrt{c}+c\sqrt{a}=\sqrt{ab}\cdot\sqrt{a}+\sqrt{bc}\cdot\sqrt{b}+\sqrt{ca}\cdot\sqrt{c}\)
\(\le\sqrt{\left(ab+bc+ca\right)\left(a+b+c\right)}\le\sqrt{\frac{\left(a+b+c\right)^2}{3}\cdot\left(a+b+c\right)}\)
\(=\sqrt{\frac{\left(a+b+c\right)^3}{3}}\Rightarrow\frac{\left(a+b+c\right)^3}{3}\ge576\)
\(\Rightarrow\left(a+b+c\right)^3\ge1728\Rightarrow a+b+c\ge\sqrt[3]{1728}=12\)
Dấu "=" xảy ra khi: \(a=b=c=4\)
em nghĩ bài này tìm giá trị lớn nhất ạ
\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2=\left(1\cdot\sqrt{a+b}+1\cdot\sqrt{b+c}+1\cdot\sqrt{c+a}\right)^2\)
áp dụng bđt Cauchy-Schwartz, ta có:
\(P^2\le\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left[1^2+1^2+1^2\right]\)
\(P^2\le2\cdot3=6\)
Vậy \(P\le\sqrt{6}\)
dấu "="xảy ra <=> \(a=b=c=\frac{1}{3}\)