Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\x< \frac{9}{2}\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;...;4\right\}\Rightarrow\sum x=7\)
a, Mệnh đề đúng
\(\Rightarrow \overline P:\)\(\sqrt{3}+\sqrt{2}\ne\frac{1}{\sqrt{3}-\sqrt{2}}\)
b, Mệnh đề sai
\(\Rightarrow \overline P:\) \(\left(\sqrt{2}-\sqrt{18}\right)^2\le8\)
c, Mệnh đề đúng
\(\Rightarrow \overline P:\) \(\left(\sqrt{3}+\sqrt{12}\right)^2\) không là một số hữu tỉ
d, Mệnh đề đúng
\(\Rightarrow \overline P:\) x = 2 không là nghiệm của PT \(\frac{x^2-4}{x-1}=0\)
1) \(\dfrac{x}{3}=\dfrac{y}{4}=t\Leftrightarrow\left\{{}\begin{matrix}x=3t\\y=4t\end{matrix}\right.\)
ta có \(x.y^2=324\Leftrightarrow3t.\left(4t\right)^2=324\)
\(\Leftrightarrow t^3=\dfrac{27}{4}\)
\(\Leftrightarrow t=\dfrac{3}{\sqrt[3]{4}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3.\dfrac{3}{\sqrt[3]{4}}=\dfrac{9}{\sqrt[3]{4}}\\y=4.\dfrac{3}{\sqrt[3]{4}}=\dfrac{12}{\sqrt[3]{4}}\end{matrix}\right.\)
2) \(2^{x+1}.3^y=2^{2x}.3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
3) \(\dfrac{a}{b}=\dfrac{c}{d}\)
áp dụng dãy tỉ số = nhau ta có
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\)
\(\Leftrightarrow\dfrac{a^4}{b^4}=\dfrac{c^4}{d^4}=\left(\dfrac{a-c}{b-d}\right)^4\left(1\right)\)
mà \(\dfrac{a^4}{b^4}=\dfrac{c^4}{d^4}=\dfrac{a^4+c^4}{b^4+c^4}\left(2\right)\)
từ (1)(2) suy ra đpcm
4) \(B=\dfrac{27^{15}.5^3.8^4}{25^2.81^{11}.2^{11}}=\dfrac{\left(3^3\right)^{15}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}=\dfrac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\dfrac{3.2}{5}=\dfrac{6}{5}\)
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
Điều kiện xác định: 2 x - 3 ≥ 0 4 x - 3 ≥ 0 ⇔ x ≥ 3 2 x ≥ 3 4 ⇔ x ≥ 3 2
Tập xác định của hàm số là [ 3 2 ; + ∞ )