Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do HC -HB = AB
Mà HC +HB =BC => nhân 2 vế ta có:
HC2 -HB2 =AB.BC (1).
Áp dụng định lí Pi-ta-go ta có:
HC2 =AC2-AH2
HB2 = AB2 -AH2
Nên HC2 - HB2 =AC2 -AB2 = (BC2 -AB2 ) -AB2 = BC2 -2AB2 ,(2).
Từ (1 ) và (2 ) có: BC2 - 2AB2 =AB.BC
<=> BC2 -AB.BC - 2AB2 = 0
<=> (BC +AB) (BC -2AB ) = 0,
Do AB +BC >0 nên BC = 2AB.
HC -HB = AB, HC +HB =BC
nhân 2 vế ta có HC^2 -HB^2 =AB.BC (1).
Áp dụng Pitago ta có HC ^2 =AC^2-AH^2, HB^2 = AB^2 -AH^2 nên HC^2 - HB^2 =AC^2 -AB^2 = (BC^2 -AB^2 ) -AB^2 = BC^2 -2AB^2 ,(2). Từ (1 ) và (2 ) có BC^2 - 2AB^2 =AB.BC
<=> BC^2 -AB.BC - 2AB^2 = 0
<=> (BC +AB) (BC -2AB ) = 0,
do AB +BC >0 => BC - 2AB = 0 => BC = 2AB.
:3
theo đề bài ta có BC=BH+HC mà HC-HB=AB nên ta có BC=HB+HC=2(HC-HB) nên ta có BC=2AB
a, Xét tam giác HAB có: AB2 = AH2 + BH2 => AB2 = 42 + 22 => AB2 = 16 + 4 = 20 => AB = \(\sqrt{20}\)
Xét tam giác HAC có: AB2 = HA2 + HC2 => AC2 = 42 + 82 => AC2 = 16 + 64 = 80 => AC = \(\sqrt{80}\)
b, Ta có: AB < AC\(\left(\sqrt{20}< \sqrt{80}\right)\)
=>\(\widehat{B}< \widehat{C}\:\)(Quan hệ giữa cạnh và góc đối diện)
Á mk nhầm nha \(\widehat{C}< \widehat{B}\)
#Hk_tốt
#Ngọc's_Ken'z
Trên HC lấy D sao cho HD = HB. Tam giác ABD có đường cao AH là trung tuyến nên là tam giác cân, suy ra
∠(ADB) = ∠B . (1)
Ta có: DC = HC – HD = HC – HB = AB = AD ( vì tam giác ABD cân tại A)
Nên ΔADC cân tại D, do đó ∠(DAC) = ∠C (2)
Ta có; ∠ADB + ∠DAC = ∠BAC = 90º (3)
Và ∠B + ∠C = 90º vì tam giác ABC vuông tại A (4)
Từ (2); (3) và (4) suy ra ∠(DAB) = ∠B . (5)
Từ (1) và (5) suy ra ∠(ADB) = ∠B = ∠(DAB) , do đó ΔABD là tam giác đều.
Suy ra AB = BD = AD = DC. Vậy BC = 2AB.