Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lúc sau: \(P'=\frac{U^2.R^2}{R^2_2+Z^2_C}=\frac{U^2.R^2}{R^2_2+R_1R_2}=\frac{U^2}{R_1+R_2}=P=85W\)
+ \(U_{AM}=I.Z_{AM}\), \(Z_{AM}\)không thay đổi, nên để \(U_{AM}\) đạt giá trị lớn nhất khi thay đổi C thì dòng điện Imax --> Xảy ra hiện tượng cộng hưởng: \(Z_L=Z_C\)
và \(I=\frac{U}{R+r}\)
Công suất của cuộn dây khi đó: \(P=I^2.r=\left(\frac{U}{R+r}\right)^2.r\) (*)
+ Nếu đặt vào 2 đầu AB một điện áp không đổi và nối tắt tụ C thì mạch chỉ gồm r nối tiếp với R (L không có tác dụng gì)
Cường độ dòng điện của mạch: \(I=\frac{25}{R+r}=0,5\Rightarrow R+r=50\)
Mà R = 40 suy ra r = 10.
Thay vào (*) ta đc \(P=\left(\frac{200}{50}\right)^2.10=160W\)
Bạn học đến điện xoay chiều rồi à. Học nhanh vậy, mình vẫn đang ở dao động cơ :(
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Chọn đáp án A
Ta có Z C = 1 ω C = 20 Ω .
– Khi nối tắt tụ U A B 2 = U R 1 + U R 2 2 + U L 2 = 60 2
U M B 2 = U R 2 2 + U L 2 = 20 5 2 = 2000 V .
→ U R 2 = 10 2 V ; U L = 30 2 V
Có U R 1 = 20 2 → đặt R 2 = x → R 1 = 2 x ; Z L = 3 x
- Khi chưa nối tắt có
U A M = U R 1 2 + Z C 2 R 1 + R 2 2 + Z L − Z C 2 = 60 2 x 2 + 20 2 2 x + x 2 + 3 x − 20 2 = 24 5 → x = 10.
Hệ số công suất mạch o s φ = R 1 + R 2 R 1 + R 2 2 + Z L − Z C 2 = 20 + 10 20 + 10 2 + 30 − 20 2 = 0 , 95.
Do \(L=rRC\) nên \(\dfrac{Z_L}{r}.\dfrac{-Z_C}{R}=-1\)
\(\Rightarrow \tan\varphi_{AM}. \tan\varphi_{MB}=-1\)
Suy ra đoạn mạch AM vuông pha với MB
\(\Rightarrow (\dfrac{u_{AM}}{U_{0AM}})^2+(\dfrac{u_{MB}}{U_{0MB}})^2=1\)
\(\Rightarrow (\dfrac{30}{U_{0AM}})^2+(\dfrac{40\sqrt 3}{U_{0MB}})^2=1\) (1)
Và: \(U_0^2=U_{0AM}^2+U_{0MB}^2=100^2\) (2)
Giải hệ (1) và (2)
Suy ra \(U_{0AM}=60V\); \(U_{0MB}=80V\)
AM MB AB 60 80 100 53 0 37 0
Từ hình vẽ ta thấy uMB sớm pha hơn uAB là \(37^0\approx \dfrac{\pi}{5} rad\)
Vậy: \(u_{MB}=80\cos(\omega t +\dfrac{\pi}{12}+\dfrac{\pi}{5})=80\cos(\omega t +\dfrac{17\pi}{60})(V)\)
Nhớ like và share nhé
Xét đoạn mạch MB có điện áp hiệu dụng gấp đôi điện áp hiệu dung trên R suy ra góc giữa \(U_{MB}\) và \(i\) là \(60^0\)
Mà \(u\) lệch pha \(90^0\) so với \(u_{MB}\)
Suy ra độ lệch pha giữa u và i là \(\varphi =30^0\)
Ta có:
\(P=U. I. \cos \varphi=120\sqrt 3.0,5.\cos30^0=90W\)
Giải thích: Đáp án B
Khi nối tắt
Giải hệ trên:
Nếu đặt:
Khi chưa nối tắt, điện áp trên AM:
Giải phương trình trên ta được:
Hệ số công suất của mạch khi đó: