K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

đề sai bn ơi

17 tháng 9 2018

Uk cảm ơn mình biết rồi

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)

29 tháng 10 2020

Trả lời nhanh giúp mình với mình cần gấp lắm

5 tháng 7 2018

\(a.\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)

\(\text{⇔}\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)

\(\text{⇔}\text{ |}\sqrt{x-1}-2\text{ |}+\text{ |}\sqrt{x-1}+3\text{ |}=5\) ( x ≥ 1 )

\(\text{ |}\sqrt{x-1}-2\text{ |}+\sqrt{x-1}+3=5\) ( 1 )

+) Với : \(\sqrt{x-1}>2\)\(x>5\) , ta có :

( 1) ⇔ \(\sqrt{x-1}-2+\sqrt{x-1}+2=5\)

\(2\sqrt{x-1}=5\)\(x=\dfrac{29}{4}\left(TM\right)\)

+) Với : \(\sqrt{x-1}< 2\text{⇔}x< 5\) , ta có :

( 1) ⇔ \(5=5\) ( luôn đúng )

KL.............

\(b.\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=x-1\)

\(\text{ |}\sqrt{x-1}+1\text{ |}+\text{ |}\sqrt{x-1}-1\text{ |}=x-1\)

Tới đây giải tương tự như trên nhé .

Còn lại Tương tự .

5 tháng 7 2018

mỗi căn thức trên có dạng: \(\sqrt{a^2+b+2a\sqrt{b}}\)

ta sẽ phân tích thành: \(\sqrt{a^2+b+2a\sqrt{b}}=\sqrt{\left(\sqrt{b}-a\right)^2}\) (#)

** lấy căn lớn đầu tiên của câu a làm vd**

\(a^2+b=x+3\) (1)

\(2a\sqrt{b}=-4\sqrt{x-1}\) (2)

(2) => \(a\sqrt{b}=-2\sqrt{x-1}\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\\sqrt{b}=\sqrt{x-1}\end{matrix}\right.\) (*)

thử lại với (1): \(a^2+b=a^2+\left(\sqrt{b}\right)^2=\left(-2\right)^2+\left(\sqrt{x-1}\right)^2=4+x-1=x+3\)

Nếu VT (a^2 +b) bằng VP (x+3) thì đã tìm được a và b đúng , tức là dấu suy ra cuối của (*) đúng và biểu thức có thể phân tích thành dạng căn bình phương 1 biểu thức (dạng (#))

ráp a, căn b vào công thức (#), ta đc:

\(\sqrt{x+3-4\sqrt{x-1}}=\sqrt{2+x-1-4\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}-\left(-2\right)\right)^2}=\sqrt{\left(\sqrt{x-1}+2\right)^2}=\left|\sqrt{x-1}+2\right|\)

***************

sau khi phá căn các biểu thức trong phương trình rồi thì giải phương trình chứa dấu GTTĐ bằng cách xét 4 trường hợp.

Sau khi phá hết căn lớn, phương trình sẽ có dạng như sau:

\(\left|A\right|+\left|B\right|=5\) (số 5 là lấy của câu a, làm vd thôi, còn số gì cũng đc)

chia 4 trường hợp: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}A< 0\\B< 0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A< 0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B< 0\end{matrix}\right.\end{matrix}\right.\)

(thêm dấu bằng vào 1 loại dấu thôi (lớn > hoặc bé <)

dựa vào dấu của biểu thức đang xét mà bỏ dấu GTTĐ. Sau khi ra được x thì thử lại vào đk (không được CHỈ thử vào phương trình, vì nghiệm có thể đúng trong trường hợp này nhưng sai trong trường hợp khác, dẫn đến nhận nhầm nghiệm)

Giải các phương trình sau: 1. a. \(\sqrt{x+3}-\sqrt{x-4}=1\) b. \(\sqrt{10-x}+\sqrt{x+3}=5\) c. \(\sqrt{15-x}+\sqrt{3-x}=6\) d. \(\sqrt{x-1}+\sqrt{x+1}=2\) e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\) f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\) g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\) i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\) k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\) l....
Đọc tiếp

Giải các phương trình sau:

1.

a. \(\sqrt{x+3}-\sqrt{x-4}=1\)

b. \(\sqrt{10-x}+\sqrt{x+3}=5\)

c. \(\sqrt{15-x}+\sqrt{3-x}=6\)

d. \(\sqrt{x-1}+\sqrt{x+1}=2\)

e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\)

f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)

i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

l. \(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)

m. \(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}=1}\)

n. \(\sqrt{x}+\sqrt{x+\sqrt{1-x}}=1\)

o. \(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)

p. \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)

q. \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

r. \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

s. \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\)

t. \(\sqrt{3x+15}-\sqrt{4x-17}=\sqrt{x+2}\)

u. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)

v. \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)

w. \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)

x. \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)

y. \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\dfrac{x-1}{x-2}}=3\)

z. \(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\dfrac{x+2}{x-2}}=-3\)

2.

a. \(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)

b. \(\dfrac{x}{2+\dfrac{x}{2+\dfrac{x}{2+\dfrac{...}{2+\dfrac{x}{1+\sqrt{1+x}}}}}}=8\) (vế trái có 100 dấu phân thức)

c. \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)

d. \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)

e. \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)

f. \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

g. \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)

h. \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

i. \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)

k. \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)

l. \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)

m. \(\sqrt[3]{2-x}+\sqrt{x-1}=1\)

n. \(1+\sqrt[3]{x-16}=\sqrt[3]{x+3}\)

o. \(\sqrt[3]{25+x}+\sqrt[3]{3-x}=4\)

p. \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)

Làm nhanh giúp mk nhé mn ơi

5
19 tháng 11 2018

Giải pt :

1

a. ĐKXĐ : \(x\ge4\)

Ta có :

\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)

\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)

\(\Leftrightarrow x=13\) (TM ĐKXĐ)

Vậy \(S=\left\{13\right\}\)

b.ĐKXĐ : \(-3\le x\le10\)

Ta có :

\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)

Vậy \(S=\left\{1;6\right\}\)

19 tháng 11 2018

Câu c,d làm giống câu b

Câu e làm giống câu a

28 tháng 7 2019

\(A=\sqrt{x-2\sqrt{x-1}}\)\(+5\sqrt{x+3-4\sqrt{x-1}}\)\(+8\sqrt{x+8-6\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}\)\(+5\sqrt{x-1-4\sqrt{x-1}+4}\)\(+8\sqrt{x-1-6\sqrt{x-1}+9}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)\(+5\sqrt{\left(\sqrt{x-1}-2\right)^2}\)\(+8\sqrt{\left(\sqrt{x-1}-3\right)^2}\)

\(=\sqrt{x-1}-1+5\sqrt{x-1}-10+8\sqrt{x-1}-24\)

\(=16\sqrt{x-1}-35\)

\(A_{min}=-35\Leftrightarrow16\sqrt{x-1}=0\Rightarrow x=1\)

2 tháng 8 2017

+)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)= 2

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\sqrt{\left(x-1+1\right)^2}+\sqrt{\left(x-1-1\right)^2}=2\)

\(\sqrt{x^2}+\sqrt{\left(x-2\right)^2}=2\)

\(x+x-2=2\)

\(2x=4\)

\(x=2\)

+) Hình như sai đâu bài chỗ \(\sqrt{x+3+4\sqrt{x+1}}\)

\(\)

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok