K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

\(\sqrt{\left(x-1\right)^2+4}+\sqrt{\left(x+1\right)^2+9}=\sqrt{29}\)

\(the,a=\left(x-1\right)^2+4\)

\(\sqrt{a}+\sqrt{a+5}=\sqrt{29}\)

\(a+a+5+2\sqrt{a^2+5a}=29\)

\(2a+2\sqrt{a^2+5a}=24\)

\(a+\sqrt{a^2+5a}=12\)

\(\sqrt{a^2+5a}=12-a\)

\(a^2+5a=144-24a+a^2\)

\(29a=144\)

\(a=\frac{144}{29}\)

Ta có \(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\) 

<=> \(\sqrt{x^2-2x+5}=\sqrt{29}-\sqrt{x^2+2x+10}\) 

<=> \(x^2-2x+5=x^2+2x+39-2\sqrt{29\left(x^2+2x+10\right)}\) 

<=> \(2\sqrt{29x^2+58x+290}=4x+34\) 

<=> \(\sqrt{29x^2+58x+290}=2x+17\) 

<=> \(29x^2+58x+290=4x^2+68x+289\) 

<=> \(25x^2-10x+1=0\) 

<=> \(\left(5x-1\right)^2=0\) 

<=> \(x=\frac{1}{5}\)

10 tháng 9 2016

Nó có 1 nghiệm là 9

Bạn chứng minh nó là nghiệm duy nhất đi

11 tháng 9 2016

1 nghiệm ls 9

9 tháng 8 2017

1. \(x^4-x^2+3x+5=2\sqrt{x+1}\) ĐK: \(x\ge-1\)

\(\Leftrightarrow\left(x^4-x^2+2x+2\right)+\left(x+1-2\sqrt{x+1}+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-2x+2\right)+\left(\sqrt{x}-1\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\left[\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1\right]=0\)

Dễ thấy \(\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1>0\)

Vậy x =1

3. ĐK: \(x\ge-2\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+5}\ge0\\b=\sqrt{x+2}\ge0\end{matrix}\right.\)

pt trên được viết lại thành

\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=\sqrt{x+2}\\\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

9 tháng 8 2017

Phương Thảo bn xem thử đề câu 2 có phải là

\(\sqrt{x^2+x}+\sqrt{x-x^2}=x+1\)??????

15 tháng 10 2018

Bài 1:

a, Sai đề

b, \(\sqrt{x^2-4x+4}=x-2\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=x-2\)

\(\Leftrightarrow\left|x-2\right|=x-2\)(*)

TH1: \(x\ge2\Rightarrow\left|x-2\right|=x-2\)

(*)\(\Leftrightarrow x-2=x-2\)

\(\Leftrightarrow0x=0\)\(\Rightarrow\)PT có vô số nghiệm

TH2: \(x< 2\Rightarrow\left|x-2\right|=2-x\)

(*)\(\Leftrightarrow2-x=x-2\)

\(\Leftrightarrow-2x=-4\)

\(\Leftrightarrow x=2\)

Bài 2:

a, \(A=\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)

\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}\)

\(=2\sqrt{2}+2\sqrt{2}=4\sqrt{2}\)

b, \(B=\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}\)\(\left(x\ge\dfrac{5}{2}\right)\)

\(=\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}\)

\(=\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}\)

\(=\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|\)

\(=\sqrt{2x-5}+3+\sqrt{2x-5}-1\)

\(=2\sqrt{2x-5}+2\)

\(=2\left(\sqrt{2x-5}+1\right)\)

Sai thì nhớ báo nhé bạn.

16 tháng 10 2018

câu a là \(\sqrt{x-2}+x=3\)

1 tháng 7 2019

a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)

\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)

=> ptvn

d) ĐK : \(x^2+7x+7\ge0\)

Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)

\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)

\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)

\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )

\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )

1 tháng 7 2019

f) ĐK : \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :

\(a+b-ab-1=0\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)

1 tháng 7 2019

tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,

Akai Haruma, @Nguyễn Việt Lâm

giúp mk vs! ngày mai phải nộp r

18 tháng 6 2019

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

NV
12 tháng 6 2019

a/ ĐKXĐ: \(2\le x\le10\)

\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}-x^2+12x-20-20=0\)

Đặt \(\sqrt{x-2}+\sqrt{10-x}=a>0\)

\(\Rightarrow a^2=8+2\sqrt{-x^2+12x-20}\Rightarrow-x^2+12x-20=\frac{\left(a^2-8\right)^2}{4}\)

Phương trình trở thành:

\(a+\frac{\left(a^2-8\right)^2}{4}-20=0\Leftrightarrow a^4-16a^2+4a-16=0\)

\(\Leftrightarrow a^2\left(a-4\right)\left(a+4\right)+4\left(a-4\right)=0\)

\(\Leftrightarrow\left(a-4\right)\left(a^3+4a^2+4\right)=0\)

\(\Leftrightarrow a=4\) (do \(a^3+4a^2+4>0\) \(\) \(\forall a>0\))

\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}=4\)

\(\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x-2=10-x\Leftrightarrow x=6\)

NV
12 tháng 6 2019

b/ ĐKXĐ:...

Ta có:

\(VT=1.\sqrt{x^2+x-1}+1.\sqrt{x-x^2+1}\le\frac{1+x^2+x-1}{2}+\frac{1+x-x^2+1}{2}=x+1\)

\(\Rightarrow x^2-x+2\le x+1\)

\(\Leftrightarrow x^2-2x+1\le0\)

\(\Leftrightarrow\left(x-1\right)^2\le0\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)