Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x-1}+\sqrt{8-x}-2\sqrt{-x^2+9x-8}\)
\(=\left(\sqrt{x-1}-\sqrt{8-x}\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-1}=\sqrt{8-x}\Leftrightarrow x=\dfrac{9}{2}\)
Vậy \(A_{min}=0\Leftrightarrow x=\dfrac{9}{2}\)
sử dụng bđt \(\hept{\begin{cases}\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\\\sqrt{a}-\sqrt{b}\le\sqrt{a-b}\end{cases}}\)
cái trên bđt xảy ra khi a=0 hoặc b=0
cái dưới xảy ra khi a=b hoặc b=0
\(B\ge\sqrt{x-5+13-x}\ge\sqrt{8}\)
dấu ''='' xảy ra khi \(\orbr{\begin{cases}x=5\\x=13\end{cases}}\)
\(C\le\sqrt{x-1-x+8}\le\sqrt{7}\)
dấu ''='' xảy ra khi
\(x=8\)
D ,tương tự a
Bạn nguyễn thị lan hương sai maxC rồi nhé, mình chỉ bổ sung phần còn lại
\(B\le\sqrt{\left(1^2+1^2\right)\left(x-5+13-x\right)}=4\)(Bunhiacopski) Dấu bằng xảy ra khi x=9
Tìm maxD cũng vậy
diều kiện x >= 0
P=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)
= \(\frac{x+2-x+\sqrt{x}-1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)
=\(\frac{\sqrt{x}+1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
P=8/9
<=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
<=> \(3\sqrt{x}=2x-2\sqrt{x}+1\)
<=> \(2x-5\sqrt{x}+2=0\)
<=> \(\left[\begin{array}{nghiempt}x=4\\x=\frac{1}{4}\end{array}\right.\)
vậy x=4 hoặc x=1/4 thì p=8/9
a) \(P=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\left(ĐK:x\ge0;x\ne-1\right)\)
\(=\left[\frac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Để P=8/9
\(\Leftrightarrow\)\(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)
\(\Leftrightarrow24x-24\sqrt{x}+24-36\sqrt{x}=0\)
\(\Leftrightarrow24x-60\sqrt{x}+24=0\)
\(\Leftrightarrow12\left(2x-5\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x}\right)-\left(4\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)-2\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2\sqrt{x}-1=0\\\sqrt{x}-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=\frac{1}{2}\\\sqrt{x}=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{array}\right.\)
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
help me