Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Để ý thấy \(16\sqrt{3}=2.2\sqrt{3}.4=2.\sqrt{12}.4\) , như vậy , ta sẽ tách :
\(28=12+16\) \(\Rightarrow\sqrt{\sqrt{28+16\sqrt{3}}=\sqrt{\sqrt{12+16+16\sqrt{3}}}}=\sqrt{\sqrt{\left(\sqrt{12}+4\right)^2}}=\sqrt{\sqrt{12}+4}\)
\(=\sqrt{3+2.\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
b ) \(4\sqrt{3}=2.2\sqrt{3}\), tách \(7=4+3\)
c ) \(24\sqrt{5}=2.\sqrt{5}.12=2.\sqrt{5}.2.6=2.\sqrt{20}.6\) , tách : \(56=20+36\)
d ) \(2\sqrt{11}=2.11.1\) , tách : \(12=11+1\)
e ) \(4\sqrt{2}=2.\sqrt{2}.2.1=2.\sqrt{8}.1\) , tách : \(9=8+1\)
a) \(\sqrt{\sqrt{28+16\sqrt{3}}}\)
\(=\sqrt{\sqrt{\left(2\sqrt{3}\right)^2+2\cdot2\sqrt{3}\cdot4+16}}\)
\(=\sqrt{\sqrt{\left(2\sqrt{3}+4\right)^2}}\) \(=\sqrt{2\sqrt{3}+4}\)
\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
b)\(\sqrt{7+4\sqrt{3}}=\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
c) \(\sqrt{\sqrt{56-24\sqrt{5}}}=\sqrt{\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot6}+36}\)
\(=\sqrt{\sqrt{\left(2\sqrt{5}-6\right)^2}}=\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
d) \(\sqrt{12-2\sqrt{11}}=\sqrt{11-2\sqrt{11}+1}\)
\(=\sqrt{\left(\sqrt{11}-1\right)^2}=\sqrt{11}-1\)
e) \(\sqrt{9+4\sqrt{2}}=\sqrt{\left(2\sqrt{2}\right)^2+2\cdot2\sqrt{2}+1}\)
\(=\sqrt{\left(2\sqrt{2}+1\right)^2}=2\sqrt{2}+1\)
1/\(\sqrt{\frac{4}{5}}\)+\(\sqrt{\frac{1}{2}}\)
=\(\sqrt{\frac{4.5}{5.5}}\)+\(\sqrt{\frac{1.2}{2.2}}\)
= \(5.2.\sqrt{5}\)+\(2\sqrt{2}\)
=\(10\sqrt{5}+2\sqrt{2}\)
2.
\(\sqrt{\frac{1}{12}}\)+\(\sqrt{\frac{1}{3}}\)
=\(\sqrt{\frac{1.12}{12.12}}\)+\(\sqrt{\frac{1.3}{3.3}}\)
=\(12.2\sqrt{3}\)+\(3\sqrt{3}\)
=\(\sqrt{3}\left(24+3\right)\)
=\(27\sqrt{3}\)
\(\sqrt{\sqrt{\left(3\right)^8}}\)=\(\sqrt{\sqrt{6561}}=\sqrt{81}=9\)
\(\sqrt[2]{\left(-5^4\right)}=\sqrt[2]{625}=25\)
1.
\(\sqrt{\frac{2+\sqrt{3}}{2}}\\ =\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}\\ =\frac{\sqrt{4+2\sqrt{3}}}{2}\\ =\frac{\sqrt{\left(1+\sqrt{3}\right)^2}}{2}\\ =\frac{1+\sqrt{3}}{2}\)
2.
\(\sqrt{\frac{14+5\sqrt{3}}{2}}\\ =\frac{\sqrt{14+5\sqrt{3}}}{\sqrt{2}}\\ =\frac{\sqrt{28+10\sqrt{3}}}{2}\\ =\frac{\sqrt{\left(5+\sqrt{3}\right)^2}}{2}\\ =\frac{5+\sqrt{3}}{2}\)
1 . \(\sqrt{2+1}\)= \(\sqrt{3}\)
ta có : \(2\)< \(3\)\(\Rightarrow\)\(\sqrt{2}\)<\(\sqrt{3}\)\(\Rightarrow\)\(2\)< \(\sqrt{3}\)
\(\sqrt{3-1}\)= \(\sqrt{2}\)
ta có : \(1\)< \(2\)\(\Rightarrow\)\(\sqrt{1}\)< \(\sqrt{2}\)\(\Rightarrow\)\(1\)< \(\sqrt{3}-1\)
\(1,\sqrt{\left(-0,3\right)^2}=\sqrt{0,09}=0,3\)
\(2,-\frac{1}{2}\sqrt{\left(0,3\right)^2}=-\frac{1}{2}.0,3=-0,15\)
\(3,\sqrt{a^{10}}=\sqrt{\left(a^5\right)^2}=a^5\left(a\ge0\right)\)
\(4,\sqrt{\left(2-x\right)^2}=\left|2-x\right|=2-x\left(x\le2\right)\)
\(5,\sqrt{x^2+2x+1}=\sqrt{\left(x+1\right)^2}=\left|x+1\right|\)
\(6,\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)(Vì \(1< \sqrt{2}\))
\(7,\sqrt{11+6\sqrt{2}}=\sqrt{9+6\sqrt{2}+2}=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
\(8,\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)
\(=-2\)
\(9,\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1\)
\(=2\sqrt{5}\)
bài 1 đúng\(\sqrt{\dfrac{49}{9}}=\dfrac{7}{3}\)
bài 2 dùng máy tính bỏ túi hoặc
a) giả sử: \(6< \sqrt{37}\)
\(\Leftrightarrow\) 62 < (\(\sqrt{37}\))2
\(\Leftrightarrow\) 36 < 37(luôn đúng)
Vậy 6 < \(\sqrt{37}\)
b), c) tương tự
bài 3
a) đúng
b) sai
bài yêu cầu Cm không dúng máy tính thì làm như bài 2