K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

\(a,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}=\left|2-\sqrt{3}\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=2-\sqrt{3}+\left|\sqrt{3}-1\right|=2-1=1\)

\(\text{[}3-\sqrt{\left(\sqrt{3}-1\right)^2}\text{]}^2+\sqrt{147}=\left(3-\sqrt{3}+1\right)^2+7\sqrt{3}=\left(4-\sqrt{3}\right)^2+7\sqrt{3}=7-8\sqrt{3}+7\sqrt{3}=7-\sqrt{3}\)

\(\frac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}-\frac{\sqrt{10}-\sqrt{15}}{\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}}=\frac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\frac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{5}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}=\sqrt{3}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}=\sqrt{3}\)

3 tháng 8 2019

a)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)

\(=2-\sqrt{3}+\left[\left(\sqrt{3}\right)^2-2\sqrt{3+1^2}\right]\)

=\(2-\sqrt{3}+3-2\sqrt{3}+1\)

=6-3\(\sqrt{3}\)

b)\(\left[3-\sqrt{\left(\sqrt{3-1}\right)^2}\right]-\sqrt{147}\)

=\(\left[3-\sqrt{3}+1\right]^2-7\sqrt{3}\)

=\(\left(2\sqrt{3}\right)^2-7\sqrt{3}\)

=12-7\(\sqrt{3}\)

Bài 1: Rút gọn biểu thức1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\) ...
Đọc tiếp

Bài 1: Rút gọn biểu thức

1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)

3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)

5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\)   6) \(\left(3\sqrt{20}-\sqrt{125}-15\sqrt{\frac{1}{5}}\right).\sqrt{5}\)

7) \(\left(6\sqrt{128}-\frac{3}{5}\sqrt{50}+7\sqrt{8}\right):3\sqrt{2}\)  8) \(\left(2\sqrt{48}-\frac{3}{2}\sqrt{\frac{4}{3}}+\sqrt{27}\right).2\sqrt{3}\)

9) \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{8}-4\right)^2}\)    10) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

11) \(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)      12) \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

13) \(\sqrt{15-6\sqrt{6}}\)    14) \(\sqrt{8-2\sqrt{15}}\)    15) \(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)

 

1
26 tháng 11 2017

Giúp mình :<

25 tháng 8 2019

a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)

=-7

b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)

26 tháng 8 2019

So sánh:

1) \(2\sqrt{27}\)\(\sqrt{147}\)

+ \(2\sqrt{27}\) = \(6\sqrt{3}\)

+ \(\sqrt{147}\) = \(7\sqrt{3}\)

\(6\sqrt{3}\) < \(7\sqrt{3}\)

Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)

2) \(2\sqrt{15}\)\(\sqrt{59}\)

+ \(2\sqrt{15}\) = \(\sqrt{60}\)

\(\sqrt{60}\) > \(\sqrt{59}\)

Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)

3) \(2\sqrt{2}-1\) và 2

\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)

So sánh: 3 và \(2\sqrt{2}\)

+ 3 = \(\sqrt{9}\)

+ \(2\sqrt{2}=\sqrt{8}\)

\(\sqrt{8}\) < \(\sqrt{9}\)

\(\sqrt{8}\) -1 < \(\sqrt{9}\) -1

\(2\sqrt{2}\) - 1 < 3 - 1

Vậy: \(2\sqrt{2}-1< 2\)

4) \(\frac{\sqrt{3}}{2}\) và 1

+ 1 = \(\frac{2}{2}\)

\(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)

Vậy: \(\frac{\sqrt{3}}{2}\) < 1

5) \(\frac{-\sqrt{10}}{2}\)\(-2\sqrt{5}\)

+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)

\(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)

Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)

12 tháng 8 2019

Câu 1,2,3 Ez quá rồi :3

Câu 4:

Tổng quát:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v

12 tháng 8 2019

Câu 5 ko khác câu 4 lắm :v

Câu 5: 

Tổng quát:

\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v

12 tháng 8 2019

Cầm máy tính mà bấm.

12 tháng 8 2019

Câu 1 khai phương, rút gọn, quy đồng rồi tính được kết quả là 8+\(\sqrt{3}\)

Nói tóm lại là áp dụng các công thức biến đổi đơn giản và quy đồng là ra hết. Làm câu 2 với câu 3 trước ấy, 2 câu đấy dễ hơn.

a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=5-3-\sqrt{5}\)

\(=2-\sqrt{5}\)

b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)

\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)

\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)

\(=2\sqrt{3}+\sqrt{6}\)

c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)

\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)

\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)

\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))

\(=\sqrt{3}+\frac{8}{3}\)

d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)

\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)

27 tháng 8 2019

a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)

b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)

c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)

d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)

e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)

f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)

g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)