K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)

b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)

<=> 3 = 0 (vô lý)

=> pt vô nghiệm.

 

19 tháng 8 2016

c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)

\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)

d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))

\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)

Vậy pt vô nghiệm.

29 tháng 5 2017

định dạng kiểu j z ? gửi lại bài đi

4 tháng 11 2017

minh chua hoc den cai nay. SORY nhe 

NV
18 tháng 6 2020

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow2x+7+2\sqrt{x^2+7x}+\sqrt{x}+\sqrt{x+7}-42=0\)

Đặt \(\sqrt{x}+\sqrt{x+7}=t>0\)

\(\Rightarrow2x+7+2\sqrt{x^2+7x}=t^2\)

Pt trở thành:

\(t^2+t-42=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\sqrt{x+7}=6\)

\(\Leftrightarrow2x+7+2\sqrt{x^2+7x}=36\)

\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\) (\(x\le\frac{29}{2}\))

\(\Leftrightarrow4\left(x^2+7x\right)=\left(29-2x\right)^2\)

\(\Leftrightarrow144x-841=0\Rightarrow x=\frac{841}{144}\)

1 tháng 7 2019

a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)

\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)

=> ptvn

d) ĐK : \(x^2+7x+7\ge0\)

Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)

\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)

\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)

\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )

\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )

1 tháng 7 2019

f) ĐK : \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :

\(a+b-ab-1=0\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)

27 tháng 2 2022

a) ĐKXĐ : \(x\ge5\)

Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))

Khi đó phương trình thành a + b = 2

Lại có \(b^3+a^2=-2\)

=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)

a = 5 => x = 30 (tm) 

Vậy x = 30 là nghiệm phương trình 

27 tháng 2 2022

d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)

<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)

<=> |5x - 2| + |5x - 4| = 2

Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)

Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)

Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình 

4 tháng 9 2017

Đặt \(\sqrt{1+x}\)=y

=>\(1- \sqrt{y^2+y}=y \)

<=>\( \sqrt{y^2+y}=1-y \)(y<1)

<=>\(y^2+y=y^2-2y+1\)

<=>y=\(\frac{1}{3}\)

=>x=\(\frac{8}{9}\)

6 tháng 9 2017

Hộ t phần d =)))