K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

\(\sqrt{4x^2-2x+\frac{1}{4}}=4x^3-x^2+8x-2\)

\(\Leftrightarrow\sqrt{4x\left(x-\frac{1}{4}\right)-\left(x-\frac{1}{4}\right)}=4x^2\left(x-\frac{1}{4}\right)+8\left(x-\frac{1}{4}\right)\)

\(\Leftrightarrow\sqrt{\left(x-\frac{1}{4}\right)\left(4x-1\right)}=\left(x-\frac{1}{4}\right)\left(4x^2+8\right)\)

\(\Leftrightarrow\left(x-\frac{1}{4}\right)\left(4x-1\right)=\left(x-\frac{1}{4}\right)^2\left(4x^2+8\right)^2\)

\(\Leftrightarrow4\left(x-\frac{1}{4}\right)=\left(x-\frac{1}{4}\right)\left(4x^2+8\right)^2\)

\(\Leftrightarrow4=\left(4x^2+8\right)^2\)

\(\Leftrightarrow2=4x^2+8\)

\(\Leftrightarrow0=4x^2+6\)( vô lý )

=> phương trình vô nghiệm

Có gì sai sót xin bỏ qua

17 tháng 5 2019

Em nghĩ là thế này chứ ạ?

Do vế trái không âm nên vế phải cũng không âm. Nên ta có điều kiện xác định như sau:

ĐKXĐ: \(\hept{\begin{cases}4x^2-2x+\frac{1}{4}\ge0\\4x^3-x^2+8x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}4\left(x-\frac{1}{4}\right)^2\ge0\left(\text{hiển nhiên}\right)\\\left(x-\frac{1}{4}\right)\left(4x^2+8\right)\ge0\left(1\right)\end{cases}}\)

Giải (1): Do \(4x^2+8>0\forall x\) do đó \(\left(1\right)\Leftrightarrow x-\frac{1}{4}\ge0\Leftrightarrow x\ge\frac{1}{4}\)

Xét x = 1/4  là một nghiệm của phương trình.

Xét x > 1/4. PT \(\Leftrightarrow\sqrt{4\left(x-\frac{1}{4}\right)^2}=\left(x-\frac{1}{4}\right)\left(4x^2+8\right)\) 

Do x > 1/4 nên \(4\left(x-\frac{1}{4}\right)^2>0\).Phương trình trở thành:

\(2\left(x-\frac{1}{4}\right)=\left(x-\frac{1}{4}\right)\left(4x^2+8\right)\)

Do x > 1/4 nên x - 1/4 > 0.Chia hai vế cho x - 1/4.Phương trình tương đương với:

\(4x^2+8=2\Leftrightarrow4x^2+6=0\)

Phương trình này vô nghiệm do \(4x^2+6>0\forall x\)

Vậy phương trình có nghiệm duy nhất x = 1/4

Có gì sai sót xin bỏ qua ạ.Em mới lớp 7

NV
24 tháng 6 2019

a/ ĐKXĐ: ....

\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)

\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)

\(\Leftrightarrow2a^2+2b^2=5ab\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)

Phương trình vô nghiệm

NV
24 tháng 6 2019

b/ ĐKXĐ: ....

\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)

\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)

15 tháng 3 2020

Các bước làm:

Thử nghiệm: x = 2 là nghiệm 

------> Thử xem các cách làm tất nhiên là không thể bình phương  -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ

+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3

-----------------------------------------------------------------------------------------------------------------------

Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!

 \(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)

<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)

<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)

<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi  \(1\le x\le3\))

<=> x - 2 = 0 

<=> x = 2 thỏa mãn đk

29 tháng 5 2020

ĐKXĐ : ....

PT \(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)

\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}+x\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x>0\left(loai\right)\end{cases}}\)

23 tháng 8 2020

Bạn Thanh Tùng DZ ơi sao trường hợp 2 lại loại vậy

Chưa có điều kiện của x mà