K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

Giải:

\(\sqrt{42-10\sqrt{17}}+\sqrt{33-8\sqrt{17}}\)

\(=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{\left(4-\sqrt{17}\right)^2}\)

\(=\left|5-\sqrt{17}\right|+\left|4-\sqrt{17}\right|\)

\(=5-\sqrt{17}+\sqrt{17}-4\)

\(=1\)

Vậy ...

15 tháng 10 2018

\(\sqrt{42-10\sqrt{17}}+\sqrt{33-8\sqrt{17}}=\sqrt{25-2.5.\sqrt{17}+17}+\sqrt{16-2.4.\sqrt{17}+17}=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{\left(4-\sqrt{17}\right)^2}=\left|5-\sqrt{17}\right|+\left|4-\sqrt{17}\right|=5-\sqrt{17}+\sqrt{17}-4=1\)

25 tháng 10 2020

Bài làm

Rút gọn

\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right)\cdot\frac{x-\sqrt{x}}{2\sqrt{x}+1}\)

\(=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right)\cdot\frac{\sqrt{x}(\sqrt{x}-1)}{2\sqrt{x}+1}\)

\(=\left(\frac{\sqrt{x}+1}{(\sqrt{x}-1)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}(\sqrt{x}-1)}{2\sqrt{x}+1}\)

\(=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Tính:

\(\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+\frac{21}{\sqrt{3}}\)

\(=\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+\frac{7\sqrt{3}\cdot\sqrt{3}}{\sqrt{3}}\)

\(=\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+7\sqrt{3}\)

\(=\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+7\sqrt{3}\)

\(=\frac{3\sqrt{3}-3-6+2\sqrt{3}}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}+\frac{3+2\sqrt{3}}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+7\sqrt{3}\)

\(=\frac{3\sqrt{3}-3-6+2\sqrt{3}+3+2\sqrt{3}}{3-4}+7\sqrt{3}\)

\(=\frac{7\sqrt{3}-6}{-1}+7\sqrt{3}\)

\(=6-7\sqrt{3}+7\sqrt{3}\)

\(=6\)

25 tháng 10 2020

Bài làm

\(\sqrt{42-10\sqrt{17}}+\sqrt{\left(\sqrt{17}-\sqrt{16}\right)^2}\)

\(=\sqrt{42-10\sqrt{17}}+\left|\sqrt{17}-\sqrt{16}\right|\)

\(=\sqrt{25-10\sqrt{17}+17}+\sqrt{17}-\sqrt{16}\)

\(=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{17}-\sqrt{16}\)

\(=\left|5-\sqrt{17}\right|+\sqrt{17}-\sqrt{16}\)

\(=5-\sqrt{17}+\sqrt{17}-\sqrt{16}\)

\(=5-4\)

\(=1\)

21 tháng 8 2018

a) \(\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{1}{2}\)

b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)

c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\\ =\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=1+\sqrt{2}\)

d) \(\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}\\ =\sqrt{81-17}=\sqrt{64}=8\)

21 tháng 8 2018

\(a.\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

\(b.\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)

\(c.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\dfrac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)

\(d.\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}=\sqrt{81-17}=8\)

Câu 2: 

a: \(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\)

\(=2+\sqrt{17-4\sqrt{5}-8}\)

\(=2+\sqrt{9-4\sqrt{5}}\)

\(=2+\sqrt{5}-2=\sqrt{5}\)

b: \(=\sqrt{2}+1+1-\sqrt{2}=2\)

c: \(=\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)

\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=18+6\sqrt{5}-6\sqrt{5}-10=8\)

22 tháng 6 2018

Bài làm của: Phùng Khánh Linh

c)\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)

= \(\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{4^2-2.4.\sqrt{8}+\left(\sqrt{8}\right)^2}\)

= \(\sqrt{\left(3-2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{\left(4-\sqrt{8}\right)^2}\)

= \(\left|3-2\sqrt{2}\right|-\left|4-\sqrt{8}\right|\)

= (3 - 2\(\sqrt{2}\)) - (4 - \(\sqrt{8}\))

= 3 - 2\(\sqrt{2}\) - 4 + \(\sqrt{8}\)

= -1

22 tháng 6 2018

\(a.\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\text{|}\sqrt{3}+1\text{|}-\text{|}\sqrt{3}-1\text{|}=2\)\(b.\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}-\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\text{|}\sqrt{5}-2\text{|}-\text{|}\sqrt{5}+2\text{|}=-4\) Còn lại tương tự nhé .