Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(2+\sqrt{6}+\sqrt{8}\right)}..\)
= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}.\)
= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(1+\sqrt{2}\right).\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right).\left(\sqrt{2}-1\right)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1.\)
\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)
\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)
=> \(A=\sqrt{5}\)
a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2}{2}\)
c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))
\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}-3}{3}\)
b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )
\(A=\sqrt{24+8\sqrt{5}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{5+2.4\sqrt{5}+16}+\sqrt{4-2.2\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}+4\right)}^2+\sqrt{\left(2-\sqrt{3}\right)}^2\)
\(=|\sqrt{5}+4|+|2-\sqrt{3}|\)
\(=\sqrt{5}+4+4-\sqrt{3}\)
\(=\sqrt{5}-\sqrt{3}+8\)
Ko biết đề sai ko?
a) \(\sqrt{11-6\sqrt{2}}-\sqrt{27+10\sqrt{2}}\)
\(=\sqrt{9-6\sqrt{2}+2}-\sqrt{25+10\sqrt{2}+2}\)
\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(5+\sqrt{2}\right)^2}\)
\(=\left|3-\sqrt{2}\right|-\left|5+\sqrt{2}\right|\)
\(=3-\sqrt{2}-5-\sqrt{2}=-2-2\sqrt{2}\)
b) \(\sqrt{13-4\sqrt{3}}-\sqrt{16-8\sqrt{3}}\)
\(=\sqrt{12-4\sqrt{3}+1}-\sqrt{12-8\sqrt{3}+4}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}-\sqrt{\left(2\sqrt{3}-2\right)^2}\)
\(=\left|2\sqrt{3}-1\right|-\left|2\sqrt{3}-2\right|\)
\(=2\sqrt{3}-1-2\sqrt{3}+2\)
\(=1\)
b, t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).(\(\sqrt{10}\)-\(\sqrt{2}\))
t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).\(\sqrt{2}\)(\(\sqrt{5}\) -1)
t = (\(\sqrt{5}\) -1).(\(\sqrt{5}\) -1).(3 +\(\sqrt{5}\))
t = (\(\sqrt{5}\) -1)2.(3 +\(\sqrt{5}\))
t = (5 - \(2\sqrt{5}\)+1).(3 +\(\sqrt{5}\))
t = 15 + \(5\sqrt{5}\) \(-6\sqrt{5}\)-10+1+\(\sqrt{5}\)
t = 6
\(\sqrt{4-2\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}+1}+\sqrt{4^2-2.4.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(4-\sqrt{3}\right)^2}\)
\(=\sqrt{3}-1+4-\sqrt{3}\)
\(=3\)