Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hề hề,,,, chả hỉu sao tự nhiên muốn trình bày mấy bài này
\(\sqrt{36+12\sqrt{5}}=\sqrt{...}\)
sao lại ko tách đc nhỉ
ta có ;\(36-16\sqrt{5}=16-2\cdot4\cdot2\sqrt{5}+20=\left(2\sqrt{5}-4\right)^2\)
\(12+2\sqrt{35}=7+2\sqrt{7}\cdot\sqrt{5}+5=\left(\sqrt{7}+\sqrt{5}\right)^2\)
\(81-36\sqrt{5}=36-2\cdot6\cdot3\sqrt{5}+45=\left(3\sqrt{5}-6\right)^2\)
\(11+4\sqrt{7}=\sqrt{7}+2\cdot2\cdot\sqrt{7}+4=\left(\sqrt{7}+2\right)^2\)
TỪ ĐÓ TÍNH RA
~ ~ ~
\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\)
\(=\sqrt{\dfrac{37}{4}-\sqrt{\left(3\sqrt{5}+2\right)^2}}\)
\(=\sqrt{\dfrac{29}{4}-3\sqrt{5}}\)
\(=\sqrt{\dfrac{29-12\sqrt{5}}{4}}\)
\(=\sqrt{\dfrac{\left(2\sqrt{5}-3\right)^2}{4}}\)
\(=\dfrac{\sqrt{5}}{2}-\dfrac{3}{4}\)
\(=\dfrac{1}{2}\left(\sqrt{5}-\dfrac{3}{2}\right)\)
\(>\sqrt{5}-\dfrac{3}{2}=B\)
~ ~ ~
\(C=\dfrac{16\sqrt{36}-20\sqrt{48}+10\sqrt{3}}{\sqrt{12}}\)
\(=\dfrac{96-80\sqrt{3}+10\sqrt{3}}{\sqrt{12}}\)
\(=\dfrac{96-70\sqrt{3}}{2\sqrt{3}}\)
\(=16\sqrt{3}-35\)
\(>16\sqrt{3}-36=B\)
~ ~ ~
\(\sqrt{29-12\sqrt{5}}=\sqrt{20-2.2\sqrt{5}.3+9}=\sqrt{\left(\sqrt{20}-3\right)^2}=\sqrt{20}-3=2\sqrt{5}-3\)
Đúng cho mình đi dẫ
\(\sqrt{3\cdot27}-\sqrt{\dfrac{144}{36}}\)=\(\sqrt{81}-\sqrt{4}\)=9-2=7
\(\dfrac{2\cdot3+3\cdot6}{4}\)=6
\(\sqrt{7}-\sqrt{7-2\cdot\sqrt{7}+1}\)=\(\sqrt{7}-\left(\sqrt{7}-1\right)\)=1
\(\dfrac{\sqrt{3-2\cdot\sqrt{3}+1}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{\sqrt{3}-1}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{1}{\sqrt{2}}\)
\(\dfrac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)+\(\dfrac{\sqrt{3}\cdot\left(1+\sqrt{3}\right)}{\sqrt{3}+1}\)-(\(\sqrt{5}+3\))
=(\(\sqrt{5}+3\))+\(\sqrt{3}\)-(\(\sqrt{5}+3\))=\(\sqrt{3}\)
\(\sqrt{3}\cdot\sqrt{9}+5\cdot\sqrt{4}\cdot3-2\sqrt{3}\)
=\(\sqrt{3}\cdot\left(3+10-2\right)\)
=\(11\sqrt{3}\)
\(\sqrt{36-12\sqrt{5}}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt{5}+20+7}\)
\(=\sqrt{3^2-2\cdot3\cdot2\sqrt{5}+\left(2\sqrt{5}\right)^2+7}\)
\(=\sqrt{\left(3-2\sqrt{5}\right)^2+7}\)