Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(x\ge\sqrt[3]{2}\)
Ta có:
\(\sqrt[3]{x^2-1}+x=\sqrt{x^3-2}\)
\(\Leftrightarrow\left(\sqrt[3]{x^2-1}-2\right)+\left(x-3\right)=\sqrt{x^3-2}-5\)
\(\Leftrightarrow\frac{x^2-9}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+\left(x-3\right)=\frac{x^3-27}{\sqrt{x^3-2}+5}\)
\(\Leftrightarrow x=3\) (thỏa mãn điều kiện)
Hoặc:
\(\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1-\frac{x^2+3x+9}{\sqrt{x^3-2}+5}=0\) (vô nghiệm với mọi \(x\ge\sqrt[3]{2}\)
Vậy \(S=\left\{3\right\}\)
Chắc là bạn ghi ko đúng đề, nghiệm của BPT này dài khoảng 2 trang giấy
Câu a:
ĐKXĐ: \(x\neq \pm 3\)
\(\left|\frac{x+5}{-x^2+9}\right|=2\Rightarrow \left[\begin{matrix} \frac{x+5}{-x^2+9}=2\\ \frac{x+5}{-x^2+9}=-2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x+5=2(-x^2+9)\\ x+5=-2(-x^2+9)\end{matrix}\right.\Rightarrow \left[\begin{matrix} 2x^2+x-13=0\\ 2x^2-x-23=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{105}}{4}\\ x=\frac{1\pm \sqrt{185}}{4}\end{matrix}\right.\) (đều thỏa mãn )
Vậy.......
Câu b:
ĐKXĐ: \(x< 2\)
Ta có: \(\frac{4}{\sqrt{2-x}}-\sqrt{2-x}=2\)
\(\Rightarrow 4-(2-x)=2\sqrt{2-x}\)
\(\Leftrightarrow 4=(2-x)+2\sqrt{2-x}\)
\(\Leftrightarrow 5=(2-x)+2\sqrt{2-x}+1=(\sqrt{2-x}+1)^2\)
\(\Rightarrow \sqrt{2-x}+1=\sqrt{5}\) (do \(\sqrt{2-x}+1>0\) )
\(\Rightarrow \sqrt{2-x}=\sqrt{5}-1\)
\(\Rightarrow 2-x=6-2\sqrt{5}\)
\(\Rightarrow x=-4+2\sqrt{5}\) (thỏa mãn)
Vậy...........
a/ ĐKXĐ \(x\ge1\)
\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)
\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)
\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)
\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)
Vậy nghiệm của BPT là \(1\le x< 2\)
b/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)
\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)
\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)
\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)
\(\Rightarrow3\le x< 4\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)
\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)
- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge\frac{2}{3}\) hai vế ko âm
\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)
\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)
Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)
Biết là hơi làm phiền nhưng anh có thể giúp em được k ạ :
Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến
\(\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)^3=x\)
\(\Leftrightarrow2x-1+x-1+3\left(\sqrt[3]{2x-1}\right)^2\sqrt[3]{x-1}+3\sqrt[3]{2x-1}.\left(\sqrt[3]{x-1}\right)^2=x\)
\(\Leftrightarrow3\sqrt[3]{2x-1}\sqrt[3]{x-1}.\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)=2-2x\)
\(\Leftrightarrow3\sqrt[3]{2x-1}\sqrt[3]{x-1}.\sqrt[3]{x}=2-2x\)
\(\Leftrightarrow\left(3\sqrt[3]{2x-1}\sqrt[3]{x-1}.\sqrt[3]{x}\right)^3=\left(2-2x\right)^3\)
\(\Leftrightarrow27x\left(x-1\right)\left(2x-1\right)=8\left(1-x\right)^3\)
\(\Leftrightarrow27x\left(x-1\right)\left(2x-1\right)+8\left(x-1\right)^3=0\)
\(\Leftrightarrow\left(x-1\right)\left(27x\left(2x-1\right)+8\left(x-1\right)^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(54x-27+8\left(x^2-2x+1\right)\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(54x-27+8x^2-16x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x^2+38x-19\right)=0\)
tới đây tìm đc x