K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2020

\(VP>0\Rightarrow VT>0\Rightarrow x< 0\)

Phương trình tương đương:

\(\sqrt[3]{-2x^3+7x^2-33x-216+216}=\frac{27}{x^2}+\frac{6}{x}-1+6\)

\(\Leftrightarrow\sqrt[3]{\left(x+3\right)\left(-2x^2+13x-72\right)+216}=\frac{\left(9-x\right)\left(x+3\right)}{x^2}+6\)

- Với \(x=-3\) là một nghiệm

Do \(-2x^2+13x-72< 0\) \(\forall x\):

- Với \(-3< x< 0\Rightarrow\left(x+3\right)\left(-2x^2+13x-72\right)< 0\)

\(\Rightarrow VT=\sqrt[3]{\left(x+3\right)\left(-2x^2+13x-72\right)+216}< \sqrt[3]{216}=6\)

\(\frac{\left(9-x\right)\left(x+3\right)}{x^2}>0\Rightarrow VP=\frac{\left(9-x\right)\left(x+3\right)}{x^2}+6>6\)

\(\Rightarrow VP>VT\Rightarrow ptvn\)

- Với \(x< -3\)

\(\left(x+3\right)\left(-2x^2+13x-72\right)>0\Rightarrow VT>6\)

\(\frac{\left(9-x\right)\left(x+3\right)}{x^2}< 0\Rightarrow VP< 6\)

\(\Rightarrow VT>VP\Rightarrow ptvn\)

Vậy pt có nghiệm duy nhất \(x=-3\)

30 tháng 6 2019

c) Đặt \(\left\{{}\begin{matrix}x-2=a\\x+2=b\end{matrix}\right.\)

\(pt\Leftrightarrow ab+4a\cdot\sqrt{\frac{b}{a}}=-3\)

\(\Leftrightarrow ab+\sqrt{\frac{16a^2\cdot b}{a}}+3=0\)

\(\Leftrightarrow ab+\sqrt{16ab}+3=0\)

\(\Leftrightarrow ab+4\sqrt{ab}+3=0\)

\(\Leftrightarrow ab+\sqrt{ab}+3\sqrt{ab}+3=0\)

\(\Leftrightarrow\sqrt{ab}\left(\sqrt{ab}+1\right)+3\left(\sqrt{ab}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{ab}+3\right)\left(\sqrt{ab}+1\right)=0\)

Dễ thấy \(VT>0\forall x\)

Do đó pt vô nghiệm

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

b)

Đặt \(\left\{\begin{matrix} \sqrt[3]{7-x}=a\\ \sqrt[3]{x-5}=b\end{matrix}\right.\). PT đã cho trở thành:

\(\frac{a-b}{a+b}=\frac{a^3-b^3}{2}\)

\(\Leftrightarrow (a-b)\left(\frac{1}{a+b}-\frac{a^2+ab+b^2}{2}\right)=0\)

Nếu \(a-b=0\Leftrightarrow a=b\Leftrightarrow a^3=b^3\Leftrightarrow 7-x=x-5\)

\(\Leftrightarrow x=6\) (thỏa mãn)

Nếu \(\frac{1}{a+b}-\frac{a^2+ab+b^2}{2}=0\)

\(\Leftrightarrow (a^2+ab+b^2)(a+b)=2=a^3+b^3\)

\(\Leftrightarrow a^2b+ab^2=0\Leftrightarrow ab(a+b)=0\)

Hiển nhiên $a+b\neq 0$ (để biểu thức có nghĩa)

Do đó \(\left[\begin{matrix} a=0\\ b=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=7\\ x=5\end{matrix}\right.\)

Vậy........

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

Bài 2:

\(P=\frac{\sqrt{x}(\sqrt{x}-3)+2\sqrt{x}(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{3x+9}{x-9}\)

\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}}{x-9}-\frac{3x+9}{x-9}=\frac{3x+3\sqrt{x}}{x-9}-\frac{3x+9}{x-9}\)

\(=\frac{3\sqrt{x}-9}{x-9}=\frac{3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{3}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

Bài 1:

\(\left\{\begin{matrix} 2x-5y=11\\ 3x+4y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 6x-15y=33\\ 6x+8y=10\end{matrix}\right.\)

Lấy PT trước trừ PT sau thu được;

$(6x-15y)-(6x+8y)=23$

$\Leftrightarrow -23y=23\Rightarrow y=-1$

$\Rightarrow 2x=11+5y=6$

$\Rightarrow x=3$

Vậy HPT có nghiệm $(x,y)=(3; -1)$

NV
12 tháng 10 2020

a/ Giải rồi

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)

Pt trở thành:

\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)

\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)

\(\Leftrightarrow...\)

NV
12 tháng 10 2020

e/ ĐKXD: \(x>0\)

\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2=x+\frac{1}{4x}+1\)

Pt trở thành:

\(5t=2\left(t^2-1\right)+4\)

\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)

\(\Leftrightarrow2x-4\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)

Bài 1: Tính a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\) b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\) c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\) e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\) Bài 2: Giải pt: a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\) c)...
Đọc tiếp

Bài 1: Tính

a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)

b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)

Bài 2: Giải pt:

a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)

c) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

d) \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

e) \(\sqrt{2x+1}+\sqrt{17-2x}=x^4-8x^3+17x^2-8x+22\)

f) \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)

g) \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)

Bài 3: Cho biểu thức:

P= \(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)

a) Rút gon P

b) Tìm x để P đạt GTNN, tìm GTNN đó.

c) Tìm x \(\in\) Z để P \(\in\) Z

@Nguyễn Văn Đạt@Akai Haruma Help me please~~~~ Giải thích cẩn thân hộ với.

3
21 tháng 7 2019
https://i.imgur.com/FpJWAoR.jpg

Tag nhầm người rồi anh ơi !! Em mới lớp 7 không biết mấy cái này

9 tháng 6 2019

a/ ĐKXĐ: \(x\ge\frac{-5}{7}\)

\(\Leftrightarrow9x-7=7x+5\Leftrightarrow x=6\)(thoả mãn)

b/ ĐKXĐ:....

\(\Leftrightarrow2x^2-3=4x-3\Leftrightarrow\left[{}\begin{matrix}x=2\left(thoảman\right)\\x=0\left(loai\right)\end{matrix}\right.\)

c/ ĐKXĐ:...

\(\Leftrightarrow\frac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)(thoả mãn)

d/ giống câu c nhưng đkxđ khác và nó vô no

14 tháng 7 2019

\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow9x-7x=5+7\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

14 tháng 7 2019

\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\)