Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^4-x^2+3x+5=2\sqrt{x+1}\) ĐK: \(x\ge-1\)
\(\Leftrightarrow\left(x^4-x^2+2x+2\right)+\left(x+1-2\sqrt{x+1}+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2-2x+2\right)+\left(\sqrt{x}-1\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\left[\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1\right]=0\)
Dễ thấy \(\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1>0\)
Vậy x =1
3. ĐK: \(x\ge-2\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+5}\ge0\\b=\sqrt{x+2}\ge0\end{matrix}\right.\)
pt trên được viết lại thành
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=\sqrt{x+2}\\\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
ĐK \(0\le x\le\frac{3}{2}\)
\(VT=\sqrt{x\left(2x^2-2x+1\right)}+2\sqrt[4]{x\left(3-2x\right).1.1}\)
Áp dụng cosi cho các biểu thức VT ta có
=> \(VT\le\frac{x+2x^2-2x+1}{2}+\frac{x+3-2x+2}{2}=x^2-x+3\)
Xét \(x^2-x\le x^4-x^3\)
<=> \(x^2\left(x^2-x\right)\ge x^2-x\)
<=> \(\left(x^2-x\right)\left(x^2-1\right)\ge0\)
<=> \(x\left(x-1\right)^2\left(x+1\right)\ge0\)luôn đúng \(\forall x\inĐKXĐ\)
=> \(VT\le VP\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}x=2x^2-2x+1\\x=3-2x\\x\left(x-1\right)^2\left(x+1\right)=0\end{cases}\Rightarrow}x=1\)
Vậy x=1