K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

chuyển căn bậc 2 ( x - 1 ) sang vế phải rồi đặt điều kiện cho 2 vế không âm rồi bình phương 2 vế sau đó giải như bth

20 tháng 7 2016

như vậy ai mà chả làm đc

20 tháng 7 2016

nhân liên hợp nhé

20 tháng 7 2016

Điều kiện xác định: \(0\le x\le1\)
Nhận ra rằng phương trình có nghiệm \(x=\frac{1}{2}\)khi x = 1-x nên ta sẽ dùng phương pháp đánh giá.
Với mọi a, b ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\).
Suy ra: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2< 2\left(\left(\sqrt{x}\right)^2+\left(\sqrt{1-x}\right)^2\right)=2\)
Vậy \(\sqrt{x}+\sqrt{1-x}\le\sqrt{2}\left(1\right)\)
Với mọi a, b ta luôn có: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
Thật vậy: \(\left(a+b\right)^4=\left(a+b\right)^2\left(a+b\right)^2\le2\left(a^2+b^2\right).2\left(a^2+b^2\right)=4\left(a^2+b^2\right)^2\)
\(4\left(a^2+b^2\right)^2< 4.2.\left(a^4+b^4\right)=8\left(a^4+b^4\right)\)suy ra: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
áp dụng BĐT trên cho \(\sqrt[4]{x}+\sqrt[4]{1-x}\)ta có:
\(\left(\sqrt[4]{x}+\sqrt[4]{1-x}\right)^4\le8\left(\left(\sqrt[4]{x}\right)^4+\left(\sqrt[4]{1-x}\right)^4\right)=8\) 
Suy ra:\(\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt[4]{8}\left(2\right)\)
từ (1), (2) suy ra: \(\sqrt{x}+\sqrt{1-x}+\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt{2}+\sqrt[4]{8}\)
Dấu "=" xảy ra: \(x=1-x\Leftrightarrow x=\frac{1}{2}\)(thoản mãn).

'

20 tháng 7 2016

bài toán:

  √x+√1−x+4√x+4√1−x=√2+4√8

18 tháng 7 2016

ĐK: \(4x^2+5x+1\ge0\Leftrightarrow\left(4x+1\right)\left(x+1\right)\ge0\)

<=>\(\orbr{\begin{cases}x\le-1\\x\ge\frac{-1}{4}\end{cases}}\)

PT trên tương đương: \(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)

Đặt \(a=\sqrt{4x^2+5x+1}\ge0;b=\sqrt{4x^2-4x+4}>0\) ta có hệ PT:

\(\hept{\begin{cases}a-b=9x-3\\a^2-b^2=9x-3\end{cases}}\Leftrightarrow a-b=a^2-b^2\)

<=>a-b=(a-b)(a+b)

<=>(a-b)(1-a-b)=0

<=>a=b hoặc 1-a-b=0

*Khi a=b  thì: \(\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\Leftrightarrow9x-3=0\)

<=>x=1/3(nhận)

*Khi 1-a-b=0 =>a+b=1 

=>\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)(vô lí vì: \(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\ge\sqrt{3}>1\))

Vậy tập nghiệm của PT là: S={1/3}

18 tháng 7 2016

kho nhi

22 tháng 7 2016

x=1

Mik tính bằng máy tính đó. Mik mới học lớp 8 thôi, chưa giải được. ^^

20 tháng 7 2016

đặt \(\sqrt{\frac{4x+9}{28}}=y+\frac{1}{2}\)(\(y\ge-\frac{1}{2}\))

<=> \(\frac{4x+9}{28}=y^2+y+\frac{1}{4}\)

<=. \(7y^2+7y=x+\frac{1}{2}\)

kết hợp với pt ban đầu ta có hệ pt \(\hept{\begin{cases}7x^2+7x=y+\frac{1}{2}\\7y^2+7y=x+\frac{1}{2}\end{cases}}\)

trừ 2 vế của 2 pt ta có \(7\left(x^2-y^2\right)+7\left(x-y\right)=y-x\)

                <=> \(7\left(x-y\right)\left(x+y\right)+7\left(x-y\right)+x-y=0\)

           <= .\(\left(x-y\right)\left(7x+7y+8\right)=0\)

<=> \(\orbr{\begin{cases}x=y\\7x+7y+8=0\end{cases}}\)(vô lí )

khi đó thay x=y vào là ok nhé 

18 tháng 7 2016

Đặt a=x2+x+2>0, phương trình trên trở thành:

\(\sqrt{a+5}+\sqrt{a}=\sqrt{3a+13}\)

\(\Rightarrow2a+5+2\sqrt{a^2+5a}=3a+13\)

\(\Leftrightarrow2\sqrt{a^2+5a}=a+8\)

\(\Leftrightarrow4a^2+20a=a^2+16a+64\)

\(\Leftrightarrow3a^2+4a-64=0\)

\(\Delta=784>0\Rightarrow\sqrt{\Delta}=28\)

=>PT có 2 nghiệm phân biệt: \(a_1=4\)(nhận);\(a_2=-\frac{16}{3}\)(loại)

Do đó : \(x^2+x+2=4\Leftrightarrow x^2+x-2=0\)

Ta có : a+b+c=1+1-2=0 

=>phương trình có 2 nghiệm pb: \(x_1=1;x_2=-2\)

Vậy tập nghiệm của PT là: S={1;-2}

18 tháng 7 2016

mình ko bjt, mình mới hok lớp 7

18 tháng 7 2016

đặt \(\sqrt{x-\sqrt{x^2-1}}=a\) và \(\sqrt{x+\sqrt{x^2-1}}=b\)

ta có hệ pt \(\hept{\begin{cases}ab=1\\\sqrt{a}+b=2\end{cases}}\)

đến đây cậu giải nốt nha

18 tháng 7 2016

to khong biet

15 tháng 7 2016

\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)

\(\Rightarrow2-x^2+2-\frac{1}{x^2}+2\sqrt{\left(2-x^2\right)\left(2-\frac{1}{x^2}\right)}=16-8\left(x+\frac{1}{x}\right)+\left(x+\frac{1}{x}\right)^2\)

\(\Rightarrow4-\left(x^2+\frac{1}{x^2}\right)+2\sqrt{5-2\left(x^2+\frac{1}{x^2}\right)}=16-8\left(x+\frac{1}{x}\right)+\left(x+\frac{1}{x}\right)^2\)

\(\Rightarrow x^2+\frac{1}{x^2}+2\sqrt{5-2\left(x^2+\frac{1}{x^2}\right)}=8\left(x+\frac{1}{x}\right)-\left(x+\frac{1}{x}\right)^2-12\)

Đặt \(a=x+\frac{1}{x}\Rightarrow\left|a\right|=\left|x+\frac{1}{x}\right|=\left|x\right|+\frac{1}{\left|x\right|}\ge2\Rightarrow\left|a\right|\ge2\)

Phươn trình trở thành:

\(a^2-2+2\sqrt{5-2\left(a^2-2\right)}=8a-a^2-12\)

Tớ nghĩ là theo cách này có vẻ khả quan

11 tháng 7 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

12 tháng 7 2019

Dấu căn của x-1 đâu bạn j eiiiii