Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a;\(10-\left(y^2-25\right)^4\)
vì \(\left(y^2-25\right)^4\ge0\)c với mọi \(Y\varepsilon R\)=>\(10-\left(y^2-25\right)^4\le10\)
vậy giá trị lớn nhất của biểu thức \(10-\left(y^2-25\right)^4\) là 1\(10< =>y^2-25=0=>y=5;y=-5\)
b;\(-125-\left(x-4\right)^2-\left(y-5\right)^2\)=-\(-125-\left[\left(x-4\right)^2-\left(y-5\right)^2\right]\le-125\)
=>giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125
\(< =>\left(x-4\right)^2=0;\left(y-5\right)^2=0=>x=4'y=5\)
Để biểu thức đạt nhỏ nhất thì (2x-3)4 đạt nhỏ nhất.
Lại có: (2x-3)4=[(2x-3)2]2 >=0
=> giá trị nhỏ nhất của nó là =0
=> giá trị nhỏ nhất là: -2
Đạt được khi x=3/2
Ta có \(:\)\(\left(x-3,5\right)^2\ge0\forall x\in R\)
Để \(\left(x-3,5\right)^2+1\)nhỏ nhất \(\Leftrightarrow\left(x-3,5\right)^2=0\Rightarrow x=3,5\)
\(\Rightarrow\left(x-3,5\right)^2+1=0+1=1\)
Vậy giá trị nhỏ nhất của \(\left(x-3,5\right)^2+1\)là \(1\)tại \(x=3,5\)
a, f(1)=1+1+2
f(căn bậc 2)=2+1=3
b,A(a;2) suy ra x=a,y=2
suy ra 2=ma.suy ra m=2/a
Bài 3:
Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))
=> a = 9.1 = 9
Ta có: x2 = 9 và y2 = 1
=> x = -3, 3
y = -1; 1
Mình làm bài 4, bài 5 làm tương tự bài 4 nhé
Biết rằng: \(\left|A\right|\ge A\)
\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)
Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)
Với x = 5 thì A đạt gtnn là: 4
\(\sqrt{2}=1,41421.....\) (số thập phân vô hạn không tuần hoàn)
Mà nếu số thập phân vô hạn không tuần hoàn thì viết bao nhiêu cũng được nhé, miễn sao có dấu phẩy