Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tu \(-\sqrt{30}\) den \(\sqrt{30}\) co 5 so nguyen chia het cho 2 la -4;-2;0;2;4
Tu \(\sqrt{5}\) den \(\sqrt{60}\) co 2 so nguyen chia het cho 3 la 3;6
Tu $-\sqrt{30}$ den $\sqrt{30}$
co 5 so nguyen chia het cho 2 la -4;-2;0;2;4
Tu $\sqrt{5}$
den $\sqrt{60}$ co 2 so nguyen chia het cho 3 la 3;6
\(A\left(\sqrt{2};\sqrt{2}\right)\Rightarrow x=\sqrt{2};y=\sqrt{2}\) Thay vào hàm số \(y=\left(\sqrt{a}-2\right)x\) ta được :
\(\sqrt{2}=\left(\sqrt{a}-2\right)\sqrt{2}\)
\(\Rightarrow\sqrt{a}-2=1\)
\(\Rightarrow\sqrt{a}=3\)
\(\Rightarrow a=9\)
Vậy \(a=9\)
\(\sqrt{x+5}=\sqrt{6x}\)
\(\Rightarrow\left(\sqrt{x+5}\right)^2=\left(\sqrt{6x}\right)^2\)
\(\Rightarrow x+5=6x\)
\(\Rightarrow5=6x-x\)
\(\Rightarrow5=5x\)
\(\Rightarrow x=1\)
Vậy \(\sqrt{x+5}=\sqrt{6x}\) có 1 nghiệm duy nhất là x=1
a: \(=\sqrt{7}+1\)
b: \(=\sqrt{5}+\sqrt{2}\)
c: \(=\sqrt{5}-\sqrt{3}\)
d: \(=2\sqrt{3}-\sqrt{7}\)
\(\sqrt[2]{8}\)= \(4\sqrt{2}\)