Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh:
\(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)
Ta có:
\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\) \(\left(1\right)\)
\(\sqrt{25}+\sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3=8\) \(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
\(b,\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\)
Tương tự:)
a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)
\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)
=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)
c/ \(16=\sqrt{16^2}\)
\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
=> \(16>\sqrt{15}.\sqrt{17}\)
d/\(8^2=64=32+32=32+2\sqrt{256}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)
=> \(8>\sqrt{15}+\sqrt{17}\)
b) Ta sẽ chứng minh bằng biến đổi tương đương :)
Ta có : \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
\(\Leftrightarrow a+b-2\sqrt{ab}< a-b\)
\(\Leftrightarrow2b-2\sqrt{ab}< 0\)
\(\Leftrightarrow2\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\) (1)
Vì a>b nên \(b-a< 0\Leftrightarrow\left(\sqrt{b}-\sqrt{a}\right)\left(\sqrt{b}+\sqrt{a}\right)< 0\Leftrightarrow\sqrt{b}-\sqrt{a}< 0\) (vì \(\sqrt{a}+\sqrt{b}>0\))
Lại có \(\sqrt{b}>0\) \(\Rightarrow2\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\) đúng.
Vì bđt cuối đúng nên bđt ban đầu được chứng minh
\(\sqrt{25-16}=\sqrt{9}=3\)
\(\sqrt{25}-\sqrt{16}=5-4=1\)
\(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
a, \(=2\sqrt{7}-8+15\sqrt{7}-12=17\sqrt{7}-20\)
b, \(=2\sqrt{2}-10\sqrt{2}+4\sqrt{2}=-4\sqrt{2}\)
c, \(=\frac{3}{8}.\frac{4}{3}-2.\frac{2}{5}=\frac{1}{2}-\frac{4}{5}=-\frac{3}{10}\)
d, \(\sqrt{\left(\sqrt{3-1}\right)^2}-\sqrt{\left(\sqrt{3-2}\right)^2}=\sqrt{3-1}-\sqrt{3-2}=\sqrt{2}-\sqrt{1}=\sqrt{2}-1\)
e, \(\sqrt{2-3}\) không tồn tại
b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
= \(\sqrt{3.4-3\sqrt{7}}-\sqrt{3.4+3\sqrt{7}}\)
= \(\sqrt{3.\left(4-\sqrt{7}\right)}-\sqrt{3.\left(4+\sqrt{7}\right)}\)
= \(\sqrt{3}.\sqrt{4-\sqrt{7}}-\sqrt{3}.\sqrt{4+\sqrt{7}}\)
= \(\sqrt{3}.\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)\)
\(\)≈ \(-2,449\)
\(\sqrt{\dfrac{13}{4}+\sqrt{3}}-\sqrt{\dfrac{7}{4}-\sqrt{3}}\)
= \(\sqrt{\dfrac{13}{4}+\dfrac{4\sqrt{3}}{4}}-\sqrt{\dfrac{7}{4}-\dfrac{4\sqrt{3}}{4}}\)
= \(\sqrt{\dfrac{13+4\sqrt{3}}{4}}-\sqrt{\dfrac{7-4\sqrt{3}}{4}}\)
= \(\dfrac{\sqrt{13+4\sqrt{3}}}{\sqrt{4}}-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)
= \(\dfrac{\sqrt{13+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)
≈ \(2,098\)
\(\sqrt{2-2.\frac{1}{2}\sqrt{2}+\frac{1}{4}}.\sqrt{8-2.2\sqrt{2}.\frac{1}{4}+\frac{1}{16}}=\sqrt{\left(\sqrt{2}-\frac{1}{2}\right)^2}\sqrt{\left(2\sqrt{2}-\frac{1}{4}\right)^2}\)
\(=\left(\sqrt{2}-\frac{1}{2}\right)\left(2\sqrt{2}-\frac{1}{4}\right)=\frac{33-10\sqrt{2}}{8}\)
\(\sqrt{2+2\sqrt{2}+1}.4\sqrt{\frac{288+2\sqrt{288}+1}{16}}=\sqrt{\left(\sqrt{2}+1\right)^2}.4\sqrt{\frac{\left(12\sqrt{2}+1\right)^2}{4^2}}\)
\(=\left(\sqrt{2}+1\right)\left(12\sqrt{2}+1\right)=25+13\sqrt{2}\)
\(\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)
\(\sqrt{16}=4\)
\(\sqrt{16}=4\)