Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lập phương 2 vế phương trình ta có :
\(5x-1+13x+1+3\sqrt[3]{\left(15x-1\right)\left(13x-1\right)}\left(\sqrt[3]{15x-1}+\sqrt[3]{13x+1}\right)=64x\)
Mà :
\(\sqrt[3]{15x-1}+\sqrt[3]{13x+1}=4\sqrt[3]{x}\) nên :
\(15x-1+13x+1+3\sqrt[3]{\left(15x-1\right)\left(13x+1\right)}.4\sqrt[3]{x}=64\)
\(\Leftrightarrow12\sqrt[3]{x\left(15x-1\right)\left(13x+1\right)}=36x\)
\(\Leftrightarrow\sqrt[3]{x\left(15x-1\right)\left(13x+1\right)}=3x\)
\(\Leftrightarrow x\left(15x-1\right)\left(13x+1\right)=27x^3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\\left(15x-1\right)\left(13x+1\right)=27x^2\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\168x^2+2x-1=0\end{array}\right.\)
\(\Leftrightarrow x\in\left\{0;\frac{1}{14};-\frac{1}{12}\right\}\)
Thử lại ta thấy \(x=0;x=\frac{1}{14};x=-\frac{1}{12}\) đều là nghiệm của phương trình đã cho.
\(2\sqrt{1-x}-\sqrt{x+1}+3\sqrt{1-x^2}=3-x\)
\(2\sqrt{1-x}-\sqrt{1+x}+2\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{\left(1-x\right)\left(1+x\right)}=3-x\)
\(2\sqrt{1-x}\left(1-\sqrt{1+x}\right)-\sqrt{1+x}\left(1-\sqrt{1-x}\right)=3-x\)
Phương trình ban đầu \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}=2^{\frac{3}{2}}.2^{-3}\)
\(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}=2^{\frac{3}{2}-3}\)
\(\Leftrightarrow x=\frac{62}{7}\) là nghiệm của phương trình
Điều kiện xác định : \(x\ge1+\sqrt{3}\)
Với điều kiện đó, bất phương trình trở thành : \(x^2+2x-2+2\sqrt{x\left(x+1\right)\left(x-2\right)}\ge3\left(x^2-2x-2\right)\left(2\right)\)
\(\Leftrightarrow\sqrt{x\left(x-2\right)\left(x+1\right)}\ge x\left(x-2\right)-2\left(x+1\right)\)
\(\Leftrightarrow\left(\sqrt{x\left(x-2\right)}-2\sqrt{x+1}\right)\left(\sqrt{x\left(x-2\right)}+\sqrt{x+1}\right)\le0\) (3)
Do với mọi x thỏa mãn (1) , ta có \(\sqrt{x\left(x-2\right)}+\sqrt{x+1}>0\) nên
(3) \(\Leftrightarrow\sqrt{x\left(x-2\right)}\le2\sqrt{x+1}\)
\(\Leftrightarrow x^2-6x-4\le0\)
\(\Leftrightarrow3-\sqrt{13}\le x\le3+\sqrt{13}\) (4)
Kết hợp (1) và (4) ta được tập nghiệm của bất phương trình đã cho là :
\(\left[1+\sqrt{3};3+\sqrt{13}\right]\)
đầu tiên ĐKXĐ: VT luôn dương ( min của 15x2-35x+23=31/12 )
=> VP>0 => Đk VP>0 ( tự làm bước này nhé )
bình phương hai vế
15x2-35x+23=x4-2x3-20x2+41x-14
chuyển vế ta được
x4 - 2x3-20x2+41x-14=0
bạn có máy tính ko??? chắc là có; z thì mò nghiệm thui!!!
tớ chỉ biết có từng đó, nếu sai mong bạn thông cảm cho@@