Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\sqrt{12}-\sqrt{27}+\sqrt{3}=\sqrt{4}.\sqrt{3}-\sqrt{9}.\sqrt{3}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)
\(=\sqrt{3}(2-3+1)=0\)
b)
\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}.\sqrt{63}-\sqrt{4}.\sqrt{175}+\sqrt{4}.\sqrt{252}-\sqrt{4}.\sqrt{112}\)
\(=2(\sqrt{63}-\sqrt{175}+\sqrt{252}-\sqrt{112})\)
\(=2(\sqrt{9}.\sqrt{7}-\sqrt{25}.\sqrt{7}+\sqrt{36}.\sqrt{7}-\sqrt{16}.\sqrt{7})\)
\(=2(3\sqrt{7}-5\sqrt{7}+6\sqrt{7}-4\sqrt{7})=2\sqrt{7}(3-5+6-4)=0\)
------------------
\(\sqrt{3}(\sqrt{12}+\sqrt{27}-\sqrt{3})=\sqrt{36}+\sqrt{81}-\sqrt{9}\)
\(=\sqrt{6^2}+\sqrt{9^2}-\sqrt{3^2}=6+9-3=12\)
c)
\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}=\frac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{5}}{\sqrt{7}.\sqrt{3}+\sqrt{7}.\sqrt{5}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{5})}{\sqrt{7}(\sqrt{3}+\sqrt{5})}=\frac{\sqrt{2}}{\sqrt{7}}\)
\(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}=\frac{\sqrt{81}.\sqrt{5}+3\sqrt{9}.\sqrt{3}}{3\sqrt{3}+\sqrt{9}.\sqrt{5}}=\frac{9\sqrt{5}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}\)
\(=\frac{3(3\sqrt{5}+3\sqrt{3})}{3\sqrt{3}+3\sqrt{5}}=3\)
d)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{6}+\sqrt{9}+\sqrt{12})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{3}+\sqrt{3}.\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{3}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})(1-\sqrt{3})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)
f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)
mik sửa lại câu f , tí nhé :
f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Bấm máy tính là ra thui mà bn
a/ \(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}=0\)
b/ \(=\left(2\sqrt{3}-10\sqrt{3}\right)\sqrt{3}=-24\)
c/ \(=15-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=15-6\sqrt{7}\)
d/ \(=\sqrt{3}\left(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\right)=12\)
\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}=\sqrt{15}\left(\sqrt{5}+\sqrt{3}\right):\sqrt{15}=\sqrt{5}+\sqrt{3}\)
3) \(\sqrt{3}\left(2\sqrt{27}-\sqrt{75}+\dfrac{3}{2}\sqrt{12}\right)\)
=\(\sqrt{3}\left(2.3\sqrt{3}-5\sqrt{3}+\dfrac{3}{2}.2\sqrt{3}\right)\)
=\(\sqrt{3}\left(6\sqrt{3}-5\sqrt{3}+3\sqrt{3}\right)\)
=\(\sqrt{3}.\left(4\sqrt{3}\right)\)
=12
\(\left(2\sqrt{3}+2.3\sqrt{3}-\sqrt{3}\right):\sqrt{3}\)
=\(\left(2\sqrt{3}+6\sqrt{3}-\sqrt{3}\right):\sqrt{3}\)
=\(\left(7\sqrt{3}\right):\sqrt{3}\)
=\(7\sqrt{3}.\dfrac{1}{\sqrt{3}}\)
=7
Bài 1:
a) Sửa đề: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)
Ta có: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)
\(=\sqrt{12}\cdot\sqrt{3}+3\sqrt{5}\cdot\sqrt{3}-4\sqrt{135}\cdot\sqrt{3}\)
\(=6+3\sqrt{15}-36\sqrt{5}\)
b) Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=3\sqrt{28}-5\sqrt{28}+3\sqrt{112}-2\sqrt{112}\)
\(=-2\sqrt{28}+\sqrt{112}=-\sqrt{112}+\sqrt{112}=0\)
c) Ta có: \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(=2\cdot4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-3\cdot2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)
\(=8\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\sqrt{5}\sqrt{\sqrt{3}}-6\sqrt{5}\sqrt{\sqrt{3}}\)
=0
Bài 2:
a) Ta có: \(A=\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)
\(=\frac{1}{\sqrt{2}}\)
b) Ta có: \(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
\(=\frac{\sqrt{405}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)
\(=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
c) Ta có: \(C=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(=\frac{\sqrt{72}-\sqrt{48}+\sqrt{20}}{\sqrt{162}-\sqrt{108}+\sqrt{45}}\)
\(=\frac{2\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}{3\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}=\frac{2}{3}\)
1 , \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}=\sqrt{12.3}-\sqrt{300.3}=6-30=-24\)
2 , \(\sqrt{3}.\left(\sqrt{12}.\sqrt{27}-\sqrt{3}\right)=\sqrt{12.27.3}-\sqrt{3.3}=18\sqrt{3}-3\)
3 , \(\left(7\sqrt{48}+3\sqrt{27}-\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-2\sqrt{3}\right):\sqrt{3}=35\)
4 , bạn làm tương tự nhé
5 , bạn làm tương tự nhé
6 , bạn làm tương tự nhé
\(\left(\sqrt{12}+2\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)
\(=\sqrt{12}:\sqrt{3}+2\sqrt{27}:\sqrt{3}-\sqrt{3}:\sqrt{3}\)
\(=\sqrt{4}+2\sqrt{9}-1\)
\(=2+6-1\)
\(=7\)
2) \(\left(4\sqrt{2}-\sqrt{8}+2\right).\sqrt{2-\sqrt{8}}\)
\(=\left(4\sqrt{2}-2\sqrt{2}+2\right).\sqrt{2-2\sqrt{2}}\)
\(=\left(2\sqrt{2}+2\right)^2.\left(\sqrt{2-2\sqrt{2}}\right)^2\)
\(=\left(8+4\right)\left(2-2\sqrt{2}\right)\)
\(=12.\left(2-2\sqrt{2}\right)\)
\(=24-24\sqrt{2}\)
\(=24\left(1-\sqrt{2}\right)\)
3) \(\sqrt{3}\left(2\sqrt{27}-\sqrt{75}+\frac{3}{2}\sqrt{12}\right)\)
\(=\sqrt{3}\left(2\sqrt{3^2.3}-\sqrt{5^2.3}+\frac{3}{2}\sqrt{2^2.3}\right)\)
\(=\sqrt{3}\left(6\sqrt{3}-5\sqrt{3}+3\sqrt{3}\right)\)
\(=\sqrt{3}.4\sqrt{3}\)
\(=12\)
\(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
\(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)
\(=0\)