K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

Tập xác định: D = R \ {m}

Hàm số đồng biến trên từng khoảng (− ∞ ; m), (m; + ∞ ) khi và chỉ khi:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ − m 2  + 4 > 0

⇔  m 2 < 4 ⇔ −2 < m < 2

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

14 tháng 11 2018

a) Tập xác định: D = R\{m}

Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:

y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2

b) Tập xác định: D = R\{m}

Hàm số nghịch biến trên từng khoảng khi và chỉ khi:

y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0

[m<1m>4[m<1m>4

c) Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3

d) Tập xác định: D = R

Hàm số đồng biến trên R khi và chỉ khi:

y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3

31 tháng 3 2017

a) . Tập xác định : R {} ;

;

Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Tiệm cận đứng ∆ : x = .

A(-1 ; ) ∈ ∆ ⇔ = -1 ⇔ m = 2.

c) m = 2 => .



14 tháng 11 2019

a) Tập xác định: D = R \ {m}

Hàm số đồng biến trên từng khoảng ( - ∞ ; m), (m;  + ∞ ) khi và chỉ khi:


⇔ − m 2  + 4 > 0

⇔  m 2  < 4 ⇔ −2 < m < 2

c) Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′ = −3 x 2  + 2mx – 3 ≤ 0

⇔ y′ =  m 2  – 9 ≤ 0

⇔  m 2  ≤ 9 ⇔ −3 ≤ m ≤ 3

31 tháng 3 2017

a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1

Tập xác định: D = R

y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)

Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R

⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R

⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1

b) Hàm số có một cực đại và một cực tiểu

⇔ phương trình y’= 0 có hai nghiệm phân biệt

⇔ (m-1)2 > 0 ⇔ m≠1

c) f’’(x) = 6x – 6m > 6x

⇔ -6m > 0 ⇔ m < 0



1 tháng 10 2017

Đáp án A

 

. yXT44NmGa1HM.png

19 tháng 4 2016

Ta có : \(y'=\frac{m^2-4}{\left(x-m\right)^2},x\ne m\) nên hàm số (1) đồng biến trên khoảng (-\(\infty\);3] khi và chỉ khi \(\begin{cases}y'>0,x\in\left(-\infty;3\right)\\m\notin\left(-\infty;3\right)\end{cases}\)\(\begin{cases}m^2-4>0\\m>3\end{cases}\)

\(\Leftrightarrow\)m<-2 hoặc m>2 và m>3 <=> m>3

Vậy m>3 thì hàm số đồng biến trên khoảng (-\(\infty\);3]

21 tháng 3 2017

Đáp án A

31 tháng 3 2017

y = 2x2 + 2mx + m -1 (Cm). Đây là hàm số bậc hai, đồ thị là parabol quay bề lõm lên phía trên.

a) m = 1 ⇒ y = 2x2 + 2x

Tập xác định D = R

\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty\)

Bảng biến thiên:

Đồ thị hàm số:

b) Tổng quát y = 2x2 + 2mx + m -1 có tập xác định D = R

y′=4x+2m=0⇔\(x=-\dfrac{m}{2}\).

Suy ra y’ > 0 với \(x>-\dfrac{m}{2}\)  và \(y'< 0\)  với \(x< -\dfrac{m}{2}\) tức là hàm số nghịch biến trên \(\left(-\infty;\dfrac{-m}{2}\right)\) và đồng biến trên \(\left(-\dfrac{m}{2};+\infty\right)\)

i) Để hàm số đồng biến trên khoảng (-1, +∞) thì phải có điều kiện (−1,+∞)∈(−\(\dfrac{m}{2}\),+∞)
Hay  \(-\dfrac{m}{2}< -1\)\(\Leftrightarrow m>2\)

ii) Hàm số đạt cực trị tại  \(x=\dfrac{m}{2}\)

Để hàm số đạt cực trị trong khoảng (-1, +∞), ta phải có:

\(-\dfrac{m}{2}\in\left(-1;+\infty\right)\) hay \(-\dfrac{m}{2}>-1\Leftrightarrow m< 2\).

c) (Cm) luôn cắt Ox tại hai điểm phân biệt 

⇔ phương trình 2x2 + 2mx + m – 1 = 0 có hai nghiệm phân biệt.

Ta có:

Δ’ = m2 – 2m + 2 = (m-1)2 + 1 > 0 ∀m

Vậy (Cm) luôn cắt O x tại hai điểm phân biệt.