Trong không gi
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S) A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\) Câu 2 : Công thức tính thể tích khối cầu có bán kính R ? A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\) Câu 3 : Một hình hộp chữ nhật có ba kích thước...
Đọc tiếp

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S)

A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\)

Câu 2 : Công thức tính thể tích khối cầu có bán kính R ?

A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\)

Câu 3 : Một hình hộp chữ nhật có ba kích thước tương ứng là a , 2a , 2a . Tính thể tích khối cầu ngoại tiếp hình hộp

A. \(\frac{9\Pi a^3}{5}\) B. \(\frac{9\Pi a^3}{4}\) C. \(9\Pi a^3\) D. \(\frac{9\Pi a^3}{2}\)

Câu 4 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a , AD = \(a\sqrt{3}\) . Cạnh bên SA vuông góc với đáy và SC tạo với đáy 1 góc 600 . Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. Tâm là trung điểm SC , R = 2a

B. Tâm là trung điểm SC , R = 4a

C. Tâm trùng với tâm của đáy , R = a

D. Tâm là trung điểm SD , R = \(\frac{a\sqrt{15}}{2}\)

Câu 5 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA vuông góc với đáy , cạnh bên SB bằng \(a\sqrt{3}\) . Tính thể tích khối cầu ngoại tiếp S.ABCD

A. \(\frac{4}{3}\Pi a^3\) B. \(\frac{16\sqrt{2}}{3}a^3\) C. \(12\sqrt{3}a^3\) D. \(\frac{4}{3}a^3\)

HELP ME !!!!!!!!!!!!!

4
AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 5:

Tương tự câu 4, ta thấy tâm $I$ của khối cầu ngoại tiếp $S.ABCD$ là trung điểm $SC$

Theo định lý Pitago:

$SA^2=SB^2-AB^2=(a\sqrt{3})^2-a^2=2a^2$

$AC^2=AB^2+BC^2=a^2+a^2=2a^2$

$SC=\sqrt{SA^2+AC^2}=\sqrt{2a^2+2a^2}=2a$

Do đó: $R=SI=IC=\frac{SC}{2}=a$

Thể tích khối cầu ngoại tiếp S.ABCD là:

$V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi a^3$

Đáp án A

 

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 4:

$AC=\sqrt{AB^2+AD^2}=2a$

$(SC, (ABCD))=\widehat{SCA}=60^0$

$\Rightarrow \frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$

$\Rightarrow SA=\sqrt{3}.AC=2\sqrt{3}a$

$SC=\sqrt{SA^2+AC^2}=\sqrt{(2\sqrt{3}a)^2+(2a)^2}=4a$

Gọi $I$ tâm mặt cầu ngoại tiếp hình chóp. $IS=IA=IC$ nên $I$ là tâm ngoại tiếp tam giác $SAC$

$\Rightarrow I$ là trung điểm $SC$.

Bán kính $IS=IC=\frac{AC}{2}=\frac{4a}{2}=2a$

Đáp án A

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\) Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\)...
Đọc tiếp

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó

A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\)

Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho

A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\) D. \(3a^3\sqrt{2}\)

Câu 3 : Một hình nón có độ dài đường sinh bằng đường kính đáy . Tính tỉ số \(\frac{S_{xq}}{S_{tp}}\)

A. \(\frac{1}{6}\) B. \(\frac{1}{3}\) C. \(\frac{2}{3}\) D. \(\frac{2}{5}\)

Câu 4 : Thiết diện qua đỉnh của hình nón là tam giác vuông cân có diện tích bằng \(3a^2\) và chiều cao của hình nón bằng \(a\sqrt{2}\) . Tính bán kính đáy của hình tròn

A. \(a\sqrt{6}\) B. 4a C. 3a D. 2a

Câu 5 : Cắt một hình trụ không nắp theo một đường sinh và " trải " lên mặt phẳng ta được một hình chữ nhật có diện tích bằng \(4\Pi a^2\) . Biết độ dài đường sinh bằng 2a , tính thể tích khối trụ đã cho

A. \(4\Pi a^3\) B. \(2\Pi a^3\) C. \(\Pi a^3\) D. \(\frac{2}{3}\Pi a^3\)

0
Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) . Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\)....
Đọc tiếp

Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) .
Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\). \(SA\perp\left(ABCD\right)\)\(SA=a\). Gọi \(M,N\) lần lượt là trung điểm của cạnh \(SB,SC\). Điểm E nằm trên cạnh \(SA\) sao cho \(SE=2EA\). Gọi điểm \(P\) là điểm di động trên cạnh \(SB\). Giả sử \(d\) là độ dài đoạn \(AP\) mà tại vị trị điểm \(P\) thì \(V_{S.MNEP}\) đạt giá trị nhỏ nhất và giả sử \(d_1\) là độ dài đoạn \(AP\) mà tại vị trí điểm \(P\) thì \(V_{S.MNP}\) đạt giá trị lớn nhất. Tính \(d+d_1\) bằng

a) 3a

b) \(\sqrt{3}a\)

c) 4a

d) Kết quả khác

0
Câu 1 : Một hình trụ có độ dài đường sinh bằng hai lần bán kính và diện tích toàn phần bằng \(\frac{3}{2}\Pi a^2\) . Tính bán kính đáy A. \(\frac{a}{2}\) B. a C. 2a D. \(\frac{a}{4}\) Câu 2 : Một hình nón có bán kính đáy bằng 4 và góc ở đỉnh bằng 600 . Diện tích xung quanh của hình nón đã cho bằng A. \(\frac{64\sqrt{3}\Pi}{3}\) B. \(\frac{32\sqrt{3}\Pi}{3}\) ...
Đọc tiếp

Câu 1 : Một hình trụ có độ dài đường sinh bằng hai lần bán kính và diện tích toàn phần bằng \(\frac{3}{2}\Pi a^2\) . Tính bán kính đáy

A. \(\frac{a}{2}\) B. a C. 2a D. \(\frac{a}{4}\)

Câu 2 : Một hình nón có bán kính đáy bằng 4 và góc ở đỉnh bằng 600 . Diện tích xung quanh của hình nón đã cho bằng

A. \(\frac{64\sqrt{3}\Pi}{3}\) B. \(\frac{32\sqrt{3}\Pi}{3}\) C. \(64\Pi\) D. \(32\Pi\)

Câu 3 : Cắt một hình trụ theo một mặt phẳng song song với trục và cách trục của hình trụ một khoảng bằng 2a , ta được thiết diện là một hình vuông cạnh a . Tính thể tích khối trụ đã cho .

A. \(2\Pi a^3\) B. \(\Pi a^3\) C. \(\Pi a^3\sqrt{3}\) D. \(4\Pi a^3\)

Câu 4 : Một hình nón đỉnh S , đáy là đường tròn tâm O và góc ở đỉnh bằng 1200 . Một mặt phẳng đi qua đỉnh S và cắt hình nón theo một thiết diện là tam giác vuông cân SAB . Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3 . Tính diện tích xung quanh của hình nón

A. \(36\Pi\sqrt{3}\) B. \(27\sqrt{3}\Pi\) C. \(18\sqrt{3}\Pi\) D. \(9\sqrt{3}\Pi\)

Câu 5 : Hình nón đỉnh I và đường tròn tâm O . Bán kính đáy bằng chiều cao của hình nón và bằng a . Hai điểm A , B nằm trên đường tròn đáy sao cho \(AB=\frac{a}{2}\) . Tính thể tích tứ diện IABO

A. \(\frac{a^3\sqrt{5}}{4}\) B. \(\frac{a^3\sqrt{5}}{48}\) C. \(\frac{a^3\sqrt{15}}{16}\) D. \(\frac{a^3\sqrt{15}}{12}\)

0
1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN 2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1) B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0) C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5) D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0) 3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau,...
Đọc tiếp

1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN

2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai

A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1)

B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0)

C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5)

D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0)

3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau, mệnh đề nào sai

A/\(\overline{a}\)/=\(\sqrt{2}\) B\(\overline{a}\perp\overline{b}\) C /\(\overline{c}\)/=\(\sqrt{3}\) D\(\overline{b}\perp\overline{c}\)

4 trong ko gian oxyz, cho hai vecto \(\overline{a}\) (2;4;-2) và \(\overline{b}\) (1;-2;3). tích vô hướng của hai vecto a và b là

5 trong ko gain với hệ tọa độ oxyz cho \(\overline{a}\) (1;-2;3) và \(\overline{b}\) (2;-1;-1 . khẳng định nào sau đây đúng

A[\(\overline{a,}\overline{b}\)]=(-5;-7;-3) B veto \(\overline{a}\) ko cùng phương với vecto \(\overline{b}\)

C vecto \(\overline{a}\) ko vuông góc với vecto \(\overline{b}\) D/\(\overline{a}\)/=\(\sqrt{14}\)

6 trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;1;0) và \(^{\overline{b}}\)(1;1;0), \(\overline{c}\)(1;1;1. trong các mệnh đề sau mệnh đề nào sai

A/\(\overline{a}\) /=\(\sqrt{2}\) B/\(\overline{c}\)/=\(\sqrt{3}\)

C \(\overline{a}\perp\overline{b}\) D\(\overline{c}\perp\overline{b}\)

7 trong ko gian với hệ trục oxyz , mặt cầu tâm I(1;-2;3) , bán kính R =2 có pt là

8 mặt cầu tâm I(2;2;-2) bán kính R tiếp xúc với mp (P):2x-3y-z+5=0. bán kính R là

9 trong ko gian với hệ tọa độ oxyz , mặt cầu (S), tâm I(1;2;-3) và đi qua A(1;0;4) có pt là

10 trong ko gian với hệ trục tọa độ oxyz, cho hai điểm A(-1;2;1), B(0;2;3). viết pt mặt cầu có đường kính AB

11 trong ko gian với hệ trục oxyz cho hai điểm M(6;2;-5),N(-4;0;7). viết pt mặt cầu đường kính MN

12 tro ko gian với hệ trục oxyz, cho điểm I(0;-3;0). viết pt mặt cầu tâm I và tiếp xúc với mp(oxz)

13 trong ko gian oxyz cho điểm M(1;1;-2) và mặt phẳng \(\alpha\) :x-y-2z=3 . viết pt mặt cầu S có tâm M tiếp xúc với mp \(\alpha\)

14 viết pt mặt cầu (S) có tâm I(-1;2;1) và tiếp xúc với mp (P):x-2y-2z-2=0

5
13 tháng 5 2020

câu 5 ấy chắc thầy tui buồn ngủ nên quánh lộn chữ sai thành đúng r

NV
13 tháng 5 2020

12.

\(R=d\left(I;Oxz\right)=\left|y_I\right|=3\)

Phương trình:

\(x^2+\left(y+3\right)^2+z^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+6y=0\)

13.

\(R=d\left(M;\alpha\right)=\frac{\left|1-1+2.2-3\right|}{\sqrt{1^2+1^2+2^2}}=\frac{1}{\sqrt{6}}\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=\frac{1}{6}\)

14.

\(R=d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)

Phương trình:

\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+2x-4y-2z-3=0\)

1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\) là 2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là 3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho 4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\) A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\) 5 cho hình trụ có độ dài đường sinh l và...
Đọc tiếp

1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\)

2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là

3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho

4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\)

A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\)

5 cho hình trụ có độ dài đường sinh l và bán kính r. Nếu độ dài đường sinh khối trụ tăng lên 3 lần, diện tích đấy k đổi thì thể tích khối trụ sẽ tăng lên

A 3 lần B \(\frac{1}{3}\) lần C 9 lần D 27 lần

6 Tọa độ giao điểm hai đường tiệm cận của đồ thị hàm số y= \(\frac{x-2}{x+1}\)

A I(1;1) B I(-1;1) C I(1;-1) D I(-1;-1)

7 tập nghiệm của bất phương trình \(log_4\left(x^2+2x-3\right)< \frac{1}{2}\)

A \(\left(-\infty;-3\right)\cup\left(1;+\infty\right)\) B \(\left(-1-\sqrt{6};-3\right)\cup\left(1;-1+\sqrt{6}\right)\) C [-3;1] D (-3;1)

8 giả sử \(\int_0^9\) f(x) dx=37 và \(\int_9^0\) g(x) . Khi đó i=\(\int_0^9\) [2f(x)+3g(x)] dx bằng

9 cho số phức z=\(\frac{1}{3-4i}\) . số phức liên hợp của z là

10 cho hai số phức z1=1+5i và z2=3-2i . Trên mặt phẳng tọa độ, điểm biểu diễn của số phức \(\overline{z}+iz_2\) là điểm nào dưới đấy

A. P(-1;-2) B.N(3;8) C.P(3;2) D Q(3;-2)

11 Trong ko gian oxyz , cho đường thẳng d : \(\frac{x +1}{1}=\frac{y-2}{3}=\frac{z}{-2}\) đi qua điểm M(0;5;m) . Gía trị của m là

A . m=0 B.m=-2 C.m=2 D.m=-1

12 Cho lăng trụ đúng ABC.\(A^,B^,C^,\) có đáy \(\Delta\) ABC vuông cân tại B ,AC =\(2\sqrt{2a}\) .Góc giữa đường thẳng \(A^,B\) và mặt phẳng (ABC) bằng \(60^0\) . Tính độ dài cạnh bên của hình lăng trụ

4
NV
6 tháng 6 2020

11.

Thay tọa độ M vào pt d ta được:

\(\frac{1}{1}=\frac{3}{3}=\frac{m}{-2}\Rightarrow m=-2.1=-2\)

12.

\(AA'\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của A'B lên (ABC)

\(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và (ABC)

\(\Rightarrow\widehat{A'BA}=60^0\)

\(AB=\frac{AC}{\sqrt{2}}=2a\Rightarrow AA'=AB.tan60^0=2a\sqrt{3}\)

NV
6 tháng 6 2020

8.

\(I=2\int\limits^9_0f\left(x\right)dx+3\int\limits^9_0g\left(x\right)dx=2.37+3.???=...\)

Đề thiếu, bạn tự điền số và tính

9.

\(z=\frac{1}{3-4i}=\frac{3+4i}{\left(3-4i\right)\left(3+4i\right)}=\frac{3}{25}+\frac{4}{25}i\)

\(\Rightarrow\overline{z}=\frac{3}{25}-\frac{4}{25}i\)

10.

\(\overline{z_1}=1-5i\) \(\Rightarrow\overline{z_1}+iz_2=1-5i+i\left(3-2i\right)=3-2i\)

Điểm biểu diễn là \(Q\left(3;-2\right)\)

NV
22 tháng 3 2019

\(V_1=\pi\int\limits^9_0xdx=\frac{81\pi}{2}\)

Gọi \(M\left(a;\sqrt{a}\right)\) (\(0\le a\le9\)) và \(N\left(a;0\right)\) là hình chiếu của M trên Ox

Khi quay AOM quanh Ox sẽ tạo thành hai hình nón chung đáy với bán kính đáy \(r=MN=y_M=\sqrt{a}\); chiều cao lần lượt là \(ON=x_N=a\)\(OM=x_M-x_N=9-a\)

\(\Rightarrow V_2=\frac{1}{3}\pi\left(\sqrt{a}\right)^2\left(a+9-a\right)=3\pi a\)

\(\Rightarrow\frac{81\pi}{2}=6\pi a\Rightarrow a=\frac{27}{4}\) \(\Rightarrow M\left(\frac{27}{4};\frac{3\sqrt{3}}{2}\right)\)

\(\Rightarrow\) diện tích phần giới hạn:

\(S=\int\limits^{\frac{27}{4}}_0\sqrt{x}dx-\frac{1}{2}.\frac{27}{4}.\frac{3\sqrt{3}}{2}=\frac{27\sqrt{3}}{4}-\frac{81\sqrt{3}}{16}=\frac{27\sqrt{3}}{16}\)

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó A. \(w=2^{50}i\) B. \(w=-2^{51}\) C. \(w=2^{51}\) D. \(w=-2^{50}i\) 14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\) A. \(\frac{25}{4}\) B. \(\frac{25}{2}\) C. \(\frac{15}{4}\) D. \(\frac{15}{2}\) 10....
Đọc tiếp

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó

A. \(w=2^{50}i\)

B. \(w=-2^{51}\)

C. \(w=2^{51}\)

D. \(w=-2^{50}i\)

14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\)

A. \(\frac{25}{4}\)

B. \(\frac{25}{2}\)

C. \(\frac{15}{4}\)

D. \(\frac{15}{2}\)

10. TÌm 2 số thực \(x\)\(y\) thỏa mãn \(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\) với \(i\) là đơn vị ảo.

A. \(x=-1;\) \(y=-3\)

B. \(x=-1;\) \(y=-1\)

C. \(x=1;\) \(y=-1\)

D.\(x=1;\) \(y=-3\)

6. Hình tròn tâm \(I\left(-1;2\right)\) bán kính \(r=5\) là tập hợp điểm biểu diễn hình học của các số phức \(z\) thỏa mãn

A. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\ge5\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}z=\left(x+1\right)+\left(y-2\right)i\\\left|z\right|=5\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}z=\left(x-1\right)+\left(y+2\right)i\\\left|z\right|\le\sqrt{5}\end{matrix}\right.\)

D. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

3. Xét số phức thỏa mãn \(\left|z-2-4i\right|=\left|z-2i\right|\) . Tìm GTNN của \(\left|z\right|\)

A. 4

B. \(2\sqrt{2}\)

C. 10

D. 8

2
NV
22 tháng 6 2020

10.

\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)

\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

6.

\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)

\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)

\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)

3.

\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)

\(\Leftrightarrow-4x-8y+20=-4y+4\)

\(\Leftrightarrow x=-y+4\)

\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)

\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)

NV
22 tháng 6 2020

17.

\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)

Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)

\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)

\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)

Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)

\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)

\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)

18.

\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)

\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)

\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)

\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)