K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)

31 tháng 7 2016

Khi đổ dần nước vào ống nghiệm đến độ cao 30cm thì thấy âm được khuyếch đại rất mạnh, có nghĩa là khi đó hiện tượng sóng dừng xảy ra, âm nghe được to nhất do tại đáy ống hình thành một nút sóng, miệng ống hình thành một bụng sóng. Mặt khác, nước cao 30cm thì cột không khí cao 50cm. Từ đó ta có:
\(300\left(\frac{1}{4.850+k\frac{1}{2.850}}\right)\le0,5=\)\(\frac{\lambda}{4}+k\frac{\lambda}{2}=v\left(\frac{1}{4f}+k\frac{1}{2f}\right)\le350\left(\frac{1}{4.850}\right)\)\(\Rightarrow1,93\le k\le2,33\Rightarrow k=2\)
\(\Rightarrow v=\frac{0,5}{\frac{1}{4.850+2.\frac{1}{2.850}}}=340\)
Từ đó dễ thấy \(\lambda\) = 40cm
Khi tiếp tục đổ nước vào ống thì chiều dài cột kí giảm dần, và để âm khuyếch đại mạnh thì chiều dài cột khí phải thỏa mãn
\(0< l=\frac{\lambda}{4}+k\frac{\lambda}{2}=10+k.20< 50\)
\(-0,5< k< 2\)
k = 0;1
Vậy khi đổ thêm nước vào thì có thêm 2 vị trí làm cho âm khuyếch đại rất mạnh 

chọn A

31 tháng 7 2016

Trước tiên ta thấy rằng trong ống lúc đổ nước và đến độ cao 30cm thì có sóng dừng giống sợi dây 1 đầu cố định, 1 đầu tự do.

Vậy ta có :  \(l=\left(2k+1\right)\lambda\Rightarrow\lambda=\frac{4l}{\left(2k+1\right)}\) (2)

Mặt khác ta có: \(v=\lambda f\) (1)

Từ (1) và (2) ta có:

\(v=\frac{4lf}{2k+1}=\frac{4\left(0,8-0,3\right)850}{2k+1}=\frac{1700}{2k+1}\)

Vì vận tốc truyền âm nằm trong khoảng:

\(300\le v\le500\Rightarrow300\le\frac{1700}{2k+1}\le350\Rightarrow1,9\le k\le2,3\Rightarrow k=2\)

Vậy vận tốc truyền âm và bước sóng của âm là:

\(v=\frac{1700}{2.2+1}=340\left(\frac{m}{s}\right)\Rightarrow\lambda=\frac{v}{f}=0,4m=40cm\)

Như vậy tính cả miệng ống thì có 3 bụng sóng. Vì:

\(l=\left(2n+1\right)\frac{\lambda}{4}\Rightarrow\pi=\frac{4.50}{2.40}-0,5=2\)

N = 2+1=3 Vậy sẽ có 3 vị trí.

Vậy B đúng

23 tháng 8 2016

v_{Max} = \omega A
Mà A giảm dần theo thời gian ⇒ W giảm dần theo thời gian

W = \frac{1}{2}mv Max^2

chọn C

6 tháng 8 2015

\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)

Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)

Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.

10π v 5π M N -10π O

Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600

Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)

Đáp án B.

7 tháng 8 2015

Phynit: cam on ban nhieu nhe :)

 

12 tháng 3 2016

\(W_{lkr}= \frac{W_{lk}}{A}\)

Năng lượng liên kết riêng của \(_1^2H\)\(_1^3H\)\(_2^4He\) lần lượt là 1,11 MeV; 2,83 MeV; 7,04 MeV.

Hạt nhân có  năng lượng liên kết riêng càng lớn thì càng bền vững 

=> Thứ tự giảm dẫn về độ bền vững là  \(_2^4He\)\(_1^3H\)\(_1^2H\).

20 tháng 3 2016

Nguyễn Quang Hưng chuẩn luôn

31 tháng 3 2016

Tia α phóng ra từ hạt nhân với tốc độ bằng 20 000 m/s.

[Chủ đề 1: Dao động cơ]Câu 1: Một con lắc lò xo gồm lò xo nhẹ có độ cứng \(k\) và vật nhỏ có khối lượng \(m\). Con lắc này dao động điều hòa với chu kì làA. \(T=2\pi\sqrt{\dfrac{m}{k}}\).B. \(T=2\pi\sqrt{\dfrac{k}{m}}\).C. \(T=\sqrt{\dfrac{m}{k}}\).D. \(T=\sqrt{\dfrac{k}{m}}\).Câu 2: Có câu chuyện về một giọng hát opera cao và khỏe có thể làm vỡ một cái cốc thủy tinh để gần. Đó là kết quả của...
Đọc tiếp

undefined

[Chủ đề 1: Dao động cơ]

Câu 1: Một con lắc lò xo gồm lò xo nhẹ có độ cứng \(k\) và vật nhỏ có khối lượng \(m\). Con lắc này dao động điều hòa với chu kì là

A. \(T=2\pi\sqrt{\dfrac{m}{k}}\).

B. \(T=2\pi\sqrt{\dfrac{k}{m}}\).

C. \(T=\sqrt{\dfrac{m}{k}}\).

D. \(T=\sqrt{\dfrac{k}{m}}\).

Câu 2: Có câu chuyện về một giọng hát opera cao và khỏe có thể làm vỡ một cái cốc thủy tinh để gần. Đó là kết quả của hiện tượng nào sau đây?

A. Cộng hưởng điện.

B. Dao động tắt dần.

C. Dao động duy trì.

D. Cộng hưởng cơ.

Câu 3: Hai dao động điều hòa cùng tần số và ngược pha nhau thì có độ lệch pha bằng

A. \(\left(2k+1\right)\pi\) với \(k=0,\pm1,\pm2,...\)

B. \(2k\pi\) với \(k=0,\pm1,\pm2,...\)

C. \(\left(k+0,5\right)\pi\) với \(k=0,\pm1,\pm2,...\)

D. \(\left(k+0,25\right)\pi\) với \(k=0,\pm1,\pm2,...\)

Câu 4: Một con lắc đơn dao động với phương trình \(s=3cos\left(\pi t+0,5\pi\right)\) (cm) (t tính bắng s). Tần số dao động của con lắc này là

A. 0,5 Hz.

B. \(4\pi\) Hz.

C. \(0,5\pi\) Hz.

C. 2 Hz.

Câu 5: Trong quá trình một vật dao động điều hòa, tập hợp ba đại lượng nào sau đây đều có giá trị không đổi?

A. Cơ năng, biên độ, tần số.

B. Tần số, gia tốc, lực kéo về.

C. Gia tốc, lực kéo về, cơ năng.

D. Biên độ, tần số, gia tốc.

Câu 6: Một vật dao động với phương trình \(x=6cos\left(4\pi t+\dfrac{\pi}{6}\right)\) (cm) (t tính bằng s). Khoảng thời gian ngắn nhất để vật đi từ vị trí có li độ 3 cm theo chiều dương đến vị trí có li độ \(-3\sqrt{3}\) cm là

A. \(\dfrac{7}{24}\) s.

B. \(\dfrac{1}{4}\) s.

C. \(\dfrac{5}{24}\) s.

D. \(\dfrac{1}{8}\) s.

Câu 7: Một vật dao động điều hòa với biên độ \(A\) và cơ năng \(W\). Khi vật đi qua vị trí có li độ \(\dfrac{2A}{3}\) thì động năng của vật là

A. \(\dfrac{2W}{9}\).

B. \(\dfrac{5W}{9}\).

C. \(\dfrac{4W}{9}\).

D. \(\dfrac{W}{3}\).

Câu 8. Một con lắc đơn có chiều dài \(l\). Kéo con lắc lệch khỏi vị trí cân bằng một góc \(\alpha_0=60^o\). Tỉ số giữa lực căng dây cực đại và cực tiểu là

A. 3.

B. 5.

C. 2.

D. 4.

Để ôn tập tốt hơn, các em hãy:

- Xem phần tổng hợp kiến thức chủ đề 1: https://hoc24.vn/ly-thuyet/chu-de-1-dao-dong-co.59158

- Xem video bài giảng ôn tập chủ đề 1: https://www.youtube.com/watch?v=XQvATZVJErY&t=5s

2
7 tháng 4 2021

Sau đây là keys

1/ \(A.T=2\pi\sqrt{\dfrac{m}{k}}\)

2/ \(D.\) Cộng hưởng cơ

3/ \(\varphi_1-\varphi_2=\pi+2k\pi=\left(2k+1\right)\pi\Rightarrow A.\left(2k+1\right)\pi\)

4/ \(\omega=2\pi f\Rightarrow f=\dfrac{\omega}{2\pi}=\dfrac{\pi}{2\pi}=\dfrac{1}{2}\left(Hz\right)\Rightarrow A.0,5Hz\)

5/ \(A.\) Cơ năng, biên độ, tần số 

6/ Câu này vẽ đường tròn ra là xong thôi

\(\varphi=arc\cos\left(\dfrac{3}{6}\right)+\dfrac{\pi}{2}+arc\sin\left(\dfrac{3\sqrt{3}}{6}\right)=\dfrac{\pi}{3}+\dfrac{\pi}{2}+\dfrac{\pi}{3}=\dfrac{7\pi}{6}\left(rad\right)\)

\(\Rightarrow t=\dfrac{\varphi}{\omega}=\dfrac{7\pi}{6.4\pi}=\dfrac{7}{24}\left(s\right)\Rightarrow A.\dfrac{7}{24}\left(s\right)\)

7/ \(W_t=\dfrac{1}{2}kx^2=\dfrac{1}{2}k\dfrac{4}{9}A^2\Rightarrow\dfrac{W_t}{W}=\dfrac{\dfrac{2}{9}kA^2}{\dfrac{1}{2}kA^2}=\dfrac{4}{9}\Leftrightarrow W_t=\dfrac{4}{9}W\left(J\right)\)

\(\Rightarrow W_d=W-W_t=W-\dfrac{4}{9}W=\dfrac{5}{9}W\left(J\right)\Rightarrow B.\dfrac{5}{9}W\left(J\right)\)

Câu này em nghĩ nên cho thêm đơn vị Jun ạ!

8/ \(T-mg\cos\alpha=m.a_{ht}=\dfrac{mv^2}{l}\)

\(\Leftrightarrow T=mg\cos\alpha+2mg\left(\cos\alpha-\cos\alpha_0\right)\)

\(\Leftrightarrow T=mg\left(3\cos\alpha-2\cos\alpha_0\right)\)

Lực căng cực đại khi vật ở vị trí thấp nhất

\(\Rightarrow\alpha=0\Rightarrow T_{max}=mg\left(3.1-2\cos60^0\right)=2mg\left(N\right)\)

Lực căng cực tiểu khi vật ở vị trí ban đầu

\(\Rightarrow\alpha=60^0\Rightarrow T_{min}=mg\left(3.\dfrac{1}{2}-2.\dfrac{1}{2}\right)=0,5mg\left(N\right)\)

\(\Rightarrow\dfrac{T_{max}}{T_{min}}=\dfrac{2}{0,5}=4\Rightarrow D.4\)

7 tháng 4 2021

Gửi các em Infographic để ghi nhớ nội dung chủ đề này tốt hơn. Nếu thấy hữu ích các em comment cho cô biết để cô làm tiếp các chủ đề sau nhé ^^.

undefined

undefined

23 tháng 8 2016

Z_L = \omega L, Z_c = \frac{1}{\omega C}, khi f tăng thì dung kháng giảm và cảm kháng tăng
l = \frac{k \lambda }{2} = \frac{kv}{2f}\Rightarrow v = \frac{2 lf}{k}
= \frac{2.2.100}{4} = 100 (m/s)

23 tháng 8 2016

lưu uyên tự hỏi tự trả lời

16 tháng 11 2019

Chọn đáp án B

+ Độ cao của âm phụ thuộc vào tần số âm. Âm càng cao có tần số càng lớn.