K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

AM1 = – α + k2π,

AM2 = π – α + k2π,

AM3 = α + (k2 + 1)π

13 tháng 4 2016

a) Hai điểm đối xứng nhau qua trục hoành thì có hoành độ bằng nhau và tung độ đối nhau.

M0 (x0; y0)=> A(x0;-y0

b) Hai điểm đối xứng với nhau qua trục tung thì có tung độ bằng nhau còn hoành độ thì đối nhau.

M0 (x0; y0) => B(-x0;y0)

c) Hai điểm đối xứng nhau qua gốc O thì các tọa độ tương ứng đối nhau.

M0 (x0; y0) => C(-x0;-y0)

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
30 tháng 3 2017

a)

b) Đáp số: = 3; = -5. Từ đây ta có = 3, = -5 và suy ra = - => là hai vectơ ngược hướng.

AH
Akai Haruma
Giáo viên
19 tháng 11 2018

Câu 1:

\(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\)\(BA=\frac{1}{3}CD\Rightarrow \overrightarrow{BA}=\frac{1}{3}\overrightarrow{CD}\)

Để $B,M,D$ thẳng hàng \(\Leftrightarrow \exists k\in\mathbb{R}|\overrightarrow{BM}=k\overrightarrow{MD}\)

\(\Leftrightarrow \overrightarrow{BA}+\overrightarrow{AM}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}\overrightarrow{CD}+x\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}(\overrightarrow{MC}+\overrightarrow{CD})+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow \frac{1}{3}\overrightarrow{MD}+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)

\(\Leftrightarrow (x-\frac{1}{3})\overrightarrow{MC}=(k-\frac{1}{3})\overrightarrow{MD}\)

\(\overrightarrow{MC}; \overrightarrow{MD}\) không phải 2 vecto cùng phương nên điều trên chỉ xảy ra khi \(x-\frac{1}{3}=k-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
19 tháng 11 2018

Bài 2:
Lấy điểm $I(a,b)$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow (1-a, 1-b)-2(4-a, 3-b)+3(2-a, -2-b)=(0,0)\)

\(\Leftrightarrow (-1-2a,-11-2b)=(0,0)\Rightarrow a=-\frac{1}{2}; b=\frac{-11}{2}\)

Vậy \(I(-\frac{1}{2}; -\frac{11}{2})\)

Ta có:

\(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|=|\overrightarrow{MI}+\overrightarrow{IA}-2(\overrightarrow{MI}+\overrightarrow{IB})+3(\overrightarrow{MI}+\overrightarrow{IC})|\)

\(|2\overrightarrow{MI}+(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC})|=2|\overrightarrow{MI}|\)

Để \(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|\) min thì \(|\overrightarrow{MI}|\) min. Điều này xảy ra khi $M$ là hình chiếu của $I$ trên $Ox$

Do đó \(M=(-\frac{1}{2};0)\)