Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,8.6+288.\left(x+3\right)^2=50\\ \Leftrightarrow48+288\left(x+3\right)^2=50\\ \Leftrightarrow\left(x+3\right)^2=\dfrac{1}{144}\\ \Leftrightarrow x+3\in\left\{-\dfrac{1}{12};\dfrac{1}{12}\right\}\\ \Leftrightarrow x\in\left\{-\dfrac{37}{12};-\dfrac{35}{12}\right\}\\ Vậy.....\)
\(b,\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
=>Số lượng số hạng của tổng trên là (x+100-x-1):1+1=100(số hạng)
\(\Rightarrow\dfrac{\left(2x+101\right).100}{2}=5750\\ \Rightarrow2x+101=\dfrac{5750.2}{100}\\ \Rightarrow2x+101=115\\ \Rightarrow2x=14\\ \Rightarrow x=7\\ Vậy........\)
a/ \(\frac{x+2}{27}=\frac{x}{9}\)
=> 9(x + 2) = 27x
=> 9x + 18 = 27x
=> 9x + 18 - 27x = 0
=> 9x - 27x + 18 = 0
=> -18x = -18
=> x = 1
b/ \(\frac{-7}{x}=\frac{21}{34-x}\)
=> -7(34 - x) = 21x
=> -238 + 7x = 21x
=> 21x - 7x = -238
=> -14x = 238
=> x = -17
c) \(\frac{-8}{15}< \frac{x}{40}< \frac{-7}{15}\)
Ta có BCNN(15,40,15) = 120
=> \(\frac{-64}{120}< \frac{3x}{120}< \frac{-56}{120}\)
=> -64 < 3x < -56
=> x \(\in\){ -19;-20;-21}
Câu d tương tự
a: \(\dfrac{x+2}{27}=\dfrac{x}{-9}\)
=>x+2=-3x
=>4x=-2
hay x=-1/2
b: \(\dfrac{-7}{x}=\dfrac{21}{34-x}\)
=>-7(34-x)=21x
=>34-x=-3x
=>2x=-34
hay x=-17
c: \(\dfrac{-8}{15}< \dfrac{x}{40}< \dfrac{-7}{15}\)
\(\Leftrightarrow-64< 3x< -56\)
hay \(x\in\left\{-21;-20;-19\right\}\)
d: \(\dfrac{-1}{2}< \dfrac{x}{18}< \dfrac{-1}{3}\)
=>-9<x<-6
hay \(x\in\left\{-8;-7\right\}\)
Bài 1: Tính ( hợp lý nếu có thể )
\(A=\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)
\(=\left(\dfrac{-3}{8}+\dfrac{5}{-8}\right)+\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\dfrac{2}{-5}\)
\(=-1+1+\dfrac{2}{-5}\)
\(=0+\dfrac{2}{-5}\)
\(=\dfrac{2}{-5}\)
\(B=\dfrac{-3}{15}+\left(\dfrac{2}{3}+\dfrac{3}{15}\right)\)
\(=\left(\dfrac{-3}{15}+\dfrac{3}{15}\right)+\dfrac{2}{3}\)
\(=0+\dfrac{2}{3}\)
\(=\dfrac{2}{3}\)
\(C=\dfrac{-5}{21}+\left(\dfrac{-16}{21}+1\right)\)
\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)
\(=-1+1\)
\(=0\)
\(D=\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
\(=\left(\dfrac{5}{-12}+\dfrac{7}{12}\right)+\dfrac{-1}{6}\)
\(=\dfrac{1}{6}+\dfrac{-1}{6}\)
\(=0\)
Bài 2: Tìm x,biết:
a) \(x+\dfrac{2}{3}=\dfrac{4}{5}\)
\(x=\dfrac{4}{5}-\dfrac{2}{3}\)
\(x=\dfrac{2}{15}\)
Vậy \(x=\dfrac{2}{15}\)
b) \(x-\dfrac{2}{3}=\dfrac{7}{21}\)
\(\Rightarrow x-\dfrac{2}{3}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}+\dfrac{2}{3}\)
\(x=\dfrac{3}{3}=1\)
Vậy \(x=1\)
c) sai đề hay sao ấy bạn.bỏ dấu - ở x thì đúng đề.mk giải luôn nha!
\(x-\dfrac{3}{4}=\dfrac{-8}{11}\)
\(x=\dfrac{-8}{11}+\dfrac{3}{4}\)
\(x=\dfrac{1}{44}\)
Vậy \(x=\dfrac{1}{44}\)
d) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=-\dfrac{3}{20}\)
Vậy \(x=-\dfrac{3}{20}\)
\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)
Bài 2:
a) \(\left(x-3\right)^3+27=0\)
\(\Leftrightarrow\left(x-3\right)^3=0-27\)
\(\Leftrightarrow\left(x-3\right)^3=-27\)
\(\Leftrightarrow\left(x-3\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow x-3=-3\)
\(\Leftrightarrow x=\left(-3\right)+3\)
\(\Leftrightarrow x=0\)
b) \(-125-\left(x+1\right)^3=0\)
\(\Leftrightarrow\left(x+1\right)^3=-125-0\)
\(\Leftrightarrow\left(x+1\right)^3=-125\)
\(\Leftrightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow x+1=-5\)
\(\Leftrightarrow x=\left(-5\right)-1\)
\(\Leftrightarrow x=-6\)
c) \(\left(2x-\dfrac{1}{4}\right)^2-\dfrac{1}{16}=0\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=0+\dfrac{1}{16}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Leftrightarrow2x-\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow2x=\dfrac{1}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow2x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{2}:2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
d) \(2^x+2^{x+1}=24\)
\(\Leftrightarrow2^x+2^x.2=24\)
\(\Leftrightarrow2^x\left(1+2\right)=24\)
\(\Leftrightarrow2^x.3=24\)
\(\Leftrightarrow2^x=24:3\)
\(\Leftrightarrow2^x=8\)
\(\Leftrightarrow2^x=2^3\)
\(\Rightarrow x=3\)
e) \(\left|x+\dfrac{1}{5}\right|-\dfrac{1}{2}=1\)
\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=1+\dfrac{1}{2}\)
\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=-\dfrac{3}{2}\\x+\dfrac{1}{5}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{17}{10}\\x=\dfrac{13}{10}\end{matrix}\right.\)
g) \(\left|x-3\right|+2x=10\)
\(\Leftrightarrow\left|x-3\right|=10-2x\)
\(\Leftrightarrow\left|x-3\right|=2.5-2x\)
\(\Leftrightarrow\left|x-3\right|=2\left(5-x\right)\)
(không chắc có nên làm tiếp câu g không, thấy đề cứ là lạ, có j sai sai...)
Bài 1:
a) \(2^7+2^9⋮10\)
Ta có: \(2^7+2^9=2^{4.1}.2^3+2^{4.2}.2\)
\(\Leftrightarrow\overline{A6}.2^3+\overline{B6}.2\)
\(\Leftrightarrow\overline{A6}.8+\overline{B6}.2\)
\(\Leftrightarrow\overline{C8}+\overline{D2}\)
\(\Leftrightarrow\overline{E0}\)
Mà \(\overline{E0}⋮10\) \(\Rightarrow2^7+2^9⋮10\)
b) \(8^{24}.25^{10}⋮2^{36}.5^{20}\)
Ta có: \(8^{24}.25^{10}=\left(2^3\right)^{24}.\left(5^2\right)^{10}\)
\(\Leftrightarrow2^{72}.5^{20}\)
Do \(2^{72}⋮2^{36}\) và \(5^{20}⋮5^{20}\) \(\Rightarrow8^{24}.25^{10}⋮2^{36}.5^{20}\)
c) \(3^{10}+3^{12}⋮30\)
Ta có: \(3^{10}+3^{12}=3^{4.2}.3^2+3^{4.3}\)
\(\Leftrightarrow\overline{A1}.3^2+\overline{B1}\)
\(\Leftrightarrow\overline{A1}.9+\overline{B1}\)
\(\Leftrightarrow\overline{C9}+\overline{B1}\)
\(\Leftrightarrow\overline{D0}⋮10\)
(Chứng minh chia hết cho 10 rồi chứng minh chia hết cho 3, mình chưa tìm được cách làm, chờ chút)
a) \(3^{x-2}=27\cdot9\)
\(3^{x-2}=3^3\cdot3^2=3^5\)
\(\Rightarrow\)\(x-2=5\Rightarrow x=7\)
b) \(2^{x+1}+2^{x+3}=80\)
\(\Rightarrow2^{x+1}\left(1+2^2\right)=80\)
\(\Rightarrow2^{x+1}\cdot5=80\)
\(\Rightarrow2^{x+1}=16=2^4\)
\(\Rightarrow x+1=4\Rightarrow x=3\)
c) \(2^{2x-3}=16\cdot8\)
\(2^{2x-3}=2^4\cdot2^3=2^7\)
\(\Rightarrow2x-3=7\)
\(\Rightarrow2x=4\Rightarrow x=2\)
d) \(2^{x-2}\cdot2^x=64\)
\(\Rightarrow2^{x-2+x}=64=2^6\)
\(\Rightarrow x-2+x=6\)
\(\Rightarrow2x-2=6\)
\(\Rightarrow2x=8\Rightarrow x=4\)
Giải:
a) \(3^{x-2}=27.9\)
\(\Leftrightarrow3^{x-2}=3^3.3^2\)
\(\Leftrightarrow3^{x-2}=3^5\)
Vì \(3=3\)
Nên \(x-2=5\)
\(\Leftrightarrow x=5+2\)
\(\Leftrightarrow x=7\)
Vậy x = 7.
b) \(2^{x+1}+2^{x+3}=80\)
\(\Leftrightarrow2^{x+1}\left(1+2^2\right)=80\)
\(\Leftrightarrow2^{x+1}.5=80\)
\(\Leftrightarrow2^{x+1}=\dfrac{80}{5}=16\)
\(\Leftrightarrow2^{x+1}=2^4\)
Vì \(2=2\)
Nên \(x+1=4\)
\(\Leftrightarrow x=4-1\)
\(\Leftrightarrow x=3\)
Vậy x = 3.
c) \(2^{2x-3}=16.8\)
\(\Leftrightarrow2^{2x-3}=2^4.2^3\)
\(\Leftrightarrow2^{2x-3}=2^7\)
Vì \(2=2\)
Nên \(2x-3=7\)
\(\Leftrightarrow2x=7+3=10\)
\(\Leftrightarrow x=\dfrac{10}{2}=5\)
Vậy x = 5.
d) \(2^{x-2}.2^x=64\)
\(2^{2x-2}=2^6\)
Vì \(2=2\)
Nên \(2x-2=6\)
\(\Leftrightarrow2x=6+2=8\)
\(\Leftrightarrow x=\dfrac{8}{2}=4\)
Vậy x = 4.
Chúc bạn học tốt!
a) x = 44.
b) x = 40.
c) x = 95.
d) x = 10.
a) x - 120: 30 = 40
x -40 =40
x =40+40
x =80
b) (x + 120) : 20 = 8
(x+ 120) = 8x20
x+120 =160
x = 160-120
x = 40
c) (x + 5). 3 = 300
x+5=300:3
x+5=100
x=100-5
x=95
d) x.2 + 21 : 3= 27
x.2 +7=27
x.2 = 27-7
x.2= 20
x=20:2
x=10