Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giá trị của biểu thức không âm khi :
\(2x-5\ge0\Leftrightarrow2x\ge5\)
\(\Leftrightarrow\) \(x\ge\dfrac{5}{2}\)
Vậy để 2x-5 không âm khi \(x\ge\dfrac{5}{2}\)
b) Giá trị của biểu thức -3xkhông lớn hơn giá trị của biểu thức -7x + 5 khi: \(-3x\le-7x+5\)
\(\Leftrightarrow\) \(-3x+7x\le5\Leftrightarrow4x\le5\Leftrightarrow x\le\dfrac{5}{4}\)
Vậy để giá trị của -3x không lớn hơn giá trị của -7x+5 thì \(x\le\dfrac{5}{4}\)
a)Ta có bất phương trình: 2x – 5 ≥ 0 ⇔ 2x > 5
⇔x≥52x≥52
Vậy để cho 2x – 5 không âm thì x≥52x≥52 .
b)Tìm x sao cho giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5.
Ta có : -3x ≤ -7x + 5 ⇔-3x + 7x ≤ 5
⇔2x ≤ 5
⇔x ≤5252
Vậy để cho giá trị của -3x không lớn hơn giá trị của -7x + 5 thì x≤52x≤52 .
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
Bài 1:
a) Vì giá trị của biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\) nên \(\frac{3x-2}{4}\) \(\ge\) \(\frac{3x+3}{6}\)
TH1: \(\frac{3x-2}{4}\) = \(\frac{3x+3}{6}\)
=> (3x-2)6 = (3x+3)4
18x -12= 12x+12
=> x = 4
TH2: \(\frac{3x-2}{4}\) > \(\frac{3x+3}{6}\)
=> (3x-2)6 > (3x+3)4
18x-12> 12x+12
=> x \(\ge\) 5
b) Vì ( x+1)2 \(\ge\) 0; (x-1)2 \(\ge\) 0 mà (x+1) luôn lớn hơn (x-1) với mọi x nên không có giá trị của x thỏa mãn (x+1)2 nhỏ hơn (x-1)2
c) Phần c bạn cũng xét tương tự như phần a
TH1: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}=\frac{x^2}{7}-\frac{2x-3}{5}\)
TH2: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}<\frac{x^2}{7}-\frac{2x-3}{5}\)
a) 2x-5 không âm <=>2x-5\(\ge0\)
\(\Leftrightarrow x\ge\frac{5}{2}\)
b)\(-3x\le-7x+5\)
\(\Leftrightarrow4x\le5\Leftrightarrow x\le\frac{5}{4}\)
Để giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5
⇔ -3x ≤ -7x + 5 (Chuyển vế và đổi dấu hạng tử -7x)
⇔ -3x + 7x ≤ 5
⇔ 4x ≤ 5
⇔
Vậy với thì giá trị biểu thức -3x không lớn hơn -7x + 5.