Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 + 3x2 + 3x + 1 = 64
=> (x + 1)3 = 64
=> (x + 1)3 = 43
=> x + 1 = 4 => x = 3
b) x3 + 6x2 + 9x = 4x
=> x3 + 6x2 + 9x - 4x = 0
=> x3 + 6x2 + 5x = 0
=> x3 + 5x2 + x2 + 5x = 0
=> x2(x + 5) + x(x + 5) = 0
=> (x + 5)(x2 + x) = 0
=> (x + 5)x(x + 1) = 0
=> \(\hept{\begin{cases}x=-5\\x=0\\x=-1\end{cases}}\)
c) 4(x - 2)2 = (x + 2)2
=> 4(x2 - 4x + 4) = x2 + 4x + 4
=> 4x2 - 16x + 16 = x2 + 4x + 4
=> 4x2 - 16x + 16 - x2 - 4x - 4 = 0
=> 3x2 - 20x + 12 = 0
=> 3x2 - 18x - 2x + 12 = 0
=> 3x(x - 6) - 2(x - 6) = 0
=> (x - 6)(3x - 2) = 0
=> \(\orbr{\begin{cases}x=6\\x=\frac{2}{3}\end{cases}}\)
d) x4 - 16x2 = 0
=> x2(x2 - 16) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
e) x4 - 4x3 + x2 - 4x = 0
=> x4 + x2 - 4x3 - 4x = 0
=> x2(x2 + 1) - 4x(x2 + 1) = 0
=> (x2 - 4x)(x2 + 1) = 0
=> x(x - 4)(x2 + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì x2 + 1 \(\ge\)1 > 0 \(\forall\)x)
f) x3 + x = 0 => x(x2 + 1) = 0 => x = 0 (vì x2 + 1 \(\ge1>0\forall\)x)
a ) \(x^2.\frac{y^3}{5}=\frac{A}{35.\left(x+y\right)}\)
\(\Leftrightarrow5A=35.x^2.y^3.\left(x+y\right)\)
\(\Leftrightarrow A=7x^2y^3\left(x+y\right)\)
b ) \(\frac{x^2-4x+4}{x^2-4}=\frac{x-2}{A}\)
\(\Leftrightarrow A\left(x-2\right)^2=\left(x-2\right)^2\left(x+2\right)\)
\(\Leftrightarrow A=\frac{\left(x-2\right)^2\left(x+2\right)}{\left(x-2\right)^2}=x+2\).
a. \(2.\left(5x-8\right)-3.\left(4x-5\right)=4.\left(3x-4\right)+11\Leftrightarrow10x-16-12x+15=12x-16+11\\ \)
\(\Leftrightarrow-2x-1=12x-5\Leftrightarrow14x-4=0\Leftrightarrow x=\frac{2}{7}\)
\(a,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=-16+11+16-15\)
\(\Leftrightarrow-14x=-4\)
\(\Leftrightarrow x=\frac{-4}{-14}=\frac{2}{7}\)
a)\(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1+3\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow-3x^2+3x+3x^2+6x+3=9\)
\(\Leftrightarrow9x=6\Leftrightarrow x=\frac{2}{3}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow x^2-2x-6x+12=0\)
\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=2\end{cases}}\)
c) \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2-9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=11\end{cases}}\)
d) \(4x^2-12x+9=\left(5-x\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2=\left(5-x\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=5-x\\2x-3=x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-2\end{cases}}\)
đk: x > = 0
\(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
<=> \(x-2\sqrt{x}+1-x+4\sqrt{x}=11\)
<=> \(2\sqrt{x}=11\)
<=> \(\sqrt{x}=\frac{11}{2}\)
<=> x = 121/4
b) 4x2 - 4 = 0
<=> 4(x - 1)(x + 1) = 0
<=> x = 1 hoặc x = -1
Trả lời:
a, \(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\sqrt{x}+1+4\sqrt{x}-\left(\sqrt{x}\right)^2=11\)
\(\Leftrightarrow2\sqrt{x}+1=11\)
\(\Leftrightarrow2\sqrt{x}=10\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=\sqrt{25}\)
\(\Rightarrow x=25\)
Vậy x = 25
b, \(4x^2-4=0\)
\(\Leftrightarrow\)\(4\left(x^2-1\right)=0\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy x = 1; x = -1
a) ( 4x - 1 ) ( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{4};2\right\}\)
b) 4x2 - 12x = 0
<=> 4x ( x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x\in\left\{0;3\right\}\)
c) ( x - 5 )4 + 25 - x2 = 0
( x - 5 ) 4 + ( 5 - x ) ( 5 + x ) = 0
( x - 5 ) ( 4 + 5 + x ) = 0
( x - 5 ) ( 9 + x ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\9+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-9\end{cases}}\)
Vậy \(x\in\left\{-9;5\right\}\)
a )
\(\left(3x+1\right)\left(3x-1\right)-\left(x-2\right)\left(x^2+2x+4\right)=x\left(6-x\right)^2\)
\(\Leftrightarrow9x^2-1-x^3+8=x^3-12x^2+36x\)
\(\Leftrightarrow-2x^3+21x^2-36x+7=0\)
Dùng máy tính casio giải phương trình bậc 3 .
\(\Rightarrow\left\{{}\begin{matrix}x_1=8,408912008\\x_2=1,868305916\\x_3=0,2227820764\end{matrix}\right.\)
b )
\(27x^2\left(x+1\right)-\left(3x+1\right)^3=-8\)
\(\Leftrightarrow27x^3+27x^2-27x^3-27x^2-9x-1=-8\)
\(\Leftrightarrow-9x=-7\)
\(\Leftrightarrow x=\dfrac{7}{9}\)
c )
\(\left(4x+1\right)\left(16x^2-4x+1\right)-16\left(4x^2-5\right)=17\)
\(\Leftrightarrow64x^3+1-64x^2+80-17=0\)
\(\Leftrightarrow64x^3-64x^2+64=0\)
\(\Leftrightarrow x^3-x^2+1=0\) . Tới đây mình botay.
Chúc bạn học tốt !!
Bài 1:
a. A = x^2 - 5x - 1
\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)
\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)
Dấu = khi x=5/2
Vậy MinC=-29/4 khi x=5/2
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
=>4x2-12x+9+1-16x2=-14x2+13x-3
=>-12x2-12x+10=-14x2+13x-3
=>2x2-25x+13=0
\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)
\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)
\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)
\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)
c. 4.( x - 3 ) - ( x + 2 ) = 0
=>4x-12-x-2=0
=>3x-14=0
=>3x=14
=>x=14/3
4 x 2 − 4x = −1
4 x 2 − 4x + 1 = 0
2 x - 1 2 = 0
2x – 1 = 0
x = 1/2