Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-5a+b=3\\\dfrac{3}{2}a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{8}{13}\\b=-\dfrac{1}{13}\end{matrix}\right.\)
b: Tọa độ giao điểm của (d1) và (d2) là;
\(\left\{{}\begin{matrix}2x+5y=17\\4x-10y=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)
Vì (d3) đi qua M(9;-6) và N(6;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}6a-8=b\\9a+48=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a-b=8\\9a-b=-48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{56}{3}\\b=-120\end{matrix}\right.\)
đường thẳng đi qua A(2;3)
thay x=2;y=3 => 3=2a+b (1)
đường thẳng đi qua B(-2;1)
thay x=-2;y=1 => 1=-2a+b (2)
(1),(2) =>\(\hept{\begin{cases}2a+b=3\\-2a+b=1\end{cases}\Leftrightarrow\hept{\begin{cases}2b=4\\-2a+b=1\end{cases}\Leftrightarrow}\hept{\begin{cases}b=2\\a=\frac{1}{2}\end{cases}}}\)
Lời giải:
1)
Ý 1: ĐTHS (d) song song với đường thẳng $y=2x-3$ nên \(a=2\)
Mặt khác (d) đi qua \(A(-3;\frac{1}{2})\Rightarrow \frac{1}{2}=a.(-3)+b=2(-3)+b\)
\(\Leftrightarrow b=\frac{13}{2}\)
PTĐT cần tìm: \(y=2x+\frac{13}{2}\)
Ý 2: (d): $y=ax+b$ song song với đường thẳng \(y=-x+4\)
\(\Rightarrow a=-1\)
Mặt khác (d) đi qua điểm (-3;1) nên:
\(1=a(-3)+b=(-1)(-3)+b\)
\(\Leftrightarrow b=-2\)
PTĐT cần tìm: \(y=-x-2\)
Ý 3: Vì đường thẳng (d) cần tìm song song với đường thẳng \(y=2x-3\Rightarrow a=2\)
Mặt khác (d) đi qua điểm \((\frac{1}{3}; \frac{4}{3})\) nên:
\(\frac{4}{3}=\frac{1}{3}a+b=\frac{1}{3}.2+b\Leftrightarrow b=\frac{2}{3}\)
Vậy PTĐT cần tìm là \(y=2x+\frac{2}{3}\)
2)
Gọi E là giao điểm của $(d_1), (d_2)$
Khi đó:
\(y_E=-x_E+6=3x_E-6\)
\(\Leftrightarrow x_E=3\Rightarrow y_E=3\)
Như vậy điểm E có tọa độ \((3;3)\)
Để 3 đường thẳng $(d_1),(d_2),(d_3)$ đồng quy thì \(E\in (d_3)\)
\(\Leftrightarrow 3=3m+m-5\Leftrightarrow 4m=8\Leftrightarrow m=2\)
Vậy m=2
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
Bài 1:
a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)
b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)
\(3=-5.2+b\Rightarrow b=13\)
c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)
\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)
d/ \(b=2\Rightarrow y=ax+2\)
d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)
\(\Rightarrow0=a+2\Rightarrow a=-2\)
e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)
f/ \(a=2\)
Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)
\(\Rightarrow1=2.2+b\Rightarrow b=-3\)
Bài 2:
\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)
\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)
\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Gọi tất cả các pt đường thẳng có dạng \(y=ax+b\)
a/ Do đường thẳng cắt trục tung tại điểm có tung độ bằng 2 và đi qua B(2;-1) nên ta có:
\(\left\{{}\begin{matrix}2=0.a+b\\-1=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+2\)
b/ Do .... nên ta có:
\(\left\{{}\begin{matrix}3=0.a+b\\a=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{3}\\b=3\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{3}x+3\)
c/ Pt hoành độ giao điểm của 2 đường thẳng:
\(5x-3=-2x+4\Rightarrow7x=7\Rightarrow x=1\Rightarrow y=2\Rightarrow\left(1;2\right)\)
Do... nên: \(\left\{{}\begin{matrix}2=1.a+b\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{2}\\b=\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+\frac{7}{2}\)
d/ Do... nên:
\(\left\{{}\begin{matrix}-5=-2a+b\\4=1.a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Rightarrow y=3x+1\)
Đường thẳng y = ax + b đi qua hai điểm A(-5; 3), B(3/2 ; -1) nên tọa độ của A và B nghiệm đúng phương trình đường thẳng.
*Điểm A: 3 = -5a + b
*Điểm B:
Khi đó a và b là nghiệm của hệ phương trình:
Vậy khi a = - 8/13 ; b = - 1/13 thì đường thẳng y = ax + b đi qua hai điểm A(-5; 3), B(3/2 ; -1).
Đường thẳng cần tìm là