K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Tọa độ giao điểm của hai đường thẳng ( d 1 ): 2x + 5y = 17, ( d 2 ): 4x – 10y = 14 là nghiệm của hệ phương trình: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Khi đó ( d 1 ) và ( d 2 ) cắt nhau tại N(6; 1).

Đường thẳng ax – 8y = b đi qua điểm M(9; -6) và N(6;1) nên tọa độ của M và N nghiệm đúng phương trình đường thẳng.

*Điểm M: 9a + 48 = b

*Điểm N: 6a – 8 = b

Khi đó a và b là nghiệm của hệ phương trình:Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy khi a = - 56/3 , b = -120 thì đường thẳng ax – 8y = b đi qua điểm M(9; -6) và đi qua giao điểm của hai đường thẳng ( d 1 ): 2x + 5y = 17, ( d 2 ): 4x – 10y = 14.

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-5a+b=3\\\dfrac{3}{2}a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{8}{13}\\b=-\dfrac{1}{13}\end{matrix}\right.\)

b: Tọa độ giao điểm của (d1) và (d2) là;
\(\left\{{}\begin{matrix}2x+5y=17\\4x-10y=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)

Vì (d3) đi qua M(9;-6) và N(6;1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}6a-8=b\\9a+48=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a-b=8\\9a-b=-48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{56}{3}\\b=-120\end{matrix}\right.\)

29 tháng 12 2019
https://i.imgur.com/k66MNlo.jpg
29 tháng 12 2019
https://i.imgur.com/pPdFtXP.jpg
10 tháng 8 2020

Phương trình đường thẳng (d) luôn có dạng :

\(y=ax+b\left(d\right)\)

a/ Ta có : \(\left(d\right)\) đi qua hai điểm \(A\left(2,7\right);B\left(-1;-2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}7=2a+b\\-2=-a+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)

Vậy...

b/ Ta có : \(\left(d\right)\backslash\backslash\left(d_1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne-6\end{matrix}\right.\)

\(\Leftrightarrow a=-2\)

Phương trình hoành độ giao điểm của \(\left(d_2\right);\left(d_3\right)\) là :

\(2x+1=-x+4\)

\(\Leftrightarrow3x=3\)

\(\Leftrightarrow x=1\)

\(\Leftrightarrow y=3\)

Tọa độ giao điểm của \(\left(d_2\right);\left(d_3\right)\)\(H\left(1;3\right)\)

Lại có : \(\left(d\right)\) đi qua \(H\left(1;3\right)\)

\(\Leftrightarrow3=a+b\)

\(\Leftrightarrow b=5\)

Vậy....

c/ Ta có : \(\left(d\right)\) đi qua \(C\left(-2;1\right)\)

\(\Leftrightarrow-2=a+b\)

Lại có : \(\left(d\right)\perp\left(d_4\right)\)

\(\Leftrightarrow a.\frac{-1}{2}=1\)

\(\Leftrightarrow a=-2\)

\(\Leftrightarrow b=0\)

Vậy...

22 tháng 12 2017

+ (d): ax-8y=b ⇒ (d): 8y = ax-b

Ta có: (d): 8y=ax-b đi qua M(9; -6)

⇒ thay \(\left\{{}\begin{matrix}x=9\\y=-6\end{matrix}\right.\) vào 8y = ax-b, ta được:

8 *(-6) = 9a-b ⇔ - 48 = 9a-b (*)

+ (d1): 2x+5y=17 ⇒ (d1): 5y= -2x+17

(d2) : 2x-5y=7 ⇒ 5y=2x-7

Ta có phương trình hoành độ giao điểm của (d1) và (d2):

-2x+17 = 2x-7 ⇔ 4x=24 ⇔ x=6

⇒ y= 1

Gọi N là giao điểm của (d1) và (d2), ta có: N(6;1)

⇒ thay \(\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\) vào 8y = ax -b, ta được: 8= 6a-b (**)

Từ (*) và (**), ta có hpt:

\(\left\{{}\begin{matrix}-48=9a-b\\8=6a-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-56\\b=6a-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{56}{3}\\b=-120\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{56}{3}\\b=-120\end{matrix}\right.\)

26 tháng 8 2018

mình cũng chưa học

8 tháng 1 2019

a, Gọi pt đường thẳng đi qua A và B là (d) y = ax + b

Vì A thuộc (d) => 1 = 2a + b (1)

Vì B thuộc (d) => 2 = a + b (2)

Lấy (1) - (2) được a = -1

thay a = -1 vào (2) => b = 3

=> (d) y = -x + 3

b,Đường thẳng x = 1 ???

9 tháng 1 2019

b) Tọa độ giao điểm của hai đừng thẳng x=1 và y=2x+1 là nghiệm của hệ phương trình:

\(\hept{\begin{cases}x=1\\y=2x+1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)=> C(1; 3) là giao điểm 

Đường thẳng y=mx+1 đi qua C (1; 3) khi đó C thuộc đường thẳng y=mx+1

=> 3=m.1+1 <=> m=2

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\) Xác định hệ số a,b trong mỗi trường hợp sau: a.(d) đi qua A(-1;4);B(2;-3) b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3 c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\) d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1 e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1 f.(d) có...
Đọc tiếp

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\)

Xác định hệ số a,b trong mỗi trường hợp sau:

a.(d) đi qua A(-1;4);B(2;-3)

b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3

c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\)

d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1

e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1

f.(d) có hệ số góc bằng 2 và đi qua điểm nằm trên đường thẳng y=2x-3 có tung độ bằng 1

Bài 2:

a)Tìm điểm cố định của các đường thẳng sau:

\(y=mx-2m-1\)

\(y=mx+m-1\)

y=(m+1)x+2m-3

b) Chứng minh đường thẳng \(y=\left(m-1\right)x-2m+3\) luôn đi qua 1 điểm cố định thuộc (P):y=\(\frac{1}{4}x^2\)

c)Chứng minh đường thẳng y=2mx+1-m luôn đi qua 1 điểm cố định thuộc (P) y=\(4x^2\)

3
NV
4 tháng 5 2019

Bài 1:

a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)

\(3=-5.2+b\Rightarrow b=13\)

c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)

\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)

d/ \(b=2\Rightarrow y=ax+2\)

d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)

\(\Rightarrow0=a+2\Rightarrow a=-2\)

e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

f/ \(a=2\)

Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)

\(\Rightarrow1=2.2+b\Rightarrow b=-3\)

NV
4 tháng 5 2019

Bài 2:

\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)

\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)

\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)

\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)