Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có:
nhiệt lượng nước đá cần để tan hết là:
\(Q_1=m_1C_1\left(t-t_1\right)+m_1\lambda\)
\(\Leftrightarrow Q_1=33600+537600=571200J\)
nhiệt lượng nước tỏa ra là:
\(Q_2=m_2C_2\left(t_2-t\right)=537600J\)
nhiệt lượng bình tỏa ra là:
\(Q_3=m_3C_3\left(t_3-t\right)=6080J\)
do Q1>(Q2+Q3) nên nước đá chưa tan hết
b)do nước đá chưa tan hết nên nhiệt độ cuối cùng của bình nhiệt lượng kế là 0 độ C
200g=0,2kg
50g=0,05kg
100g=0,1kg
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
\(\Leftrightarrow Q=m_1C_1\left(0--10\right)+m_1\lambda+m_1C_2\left(100-0\right)+m_1L\)
\(\Leftrightarrow Q=3600+68000+84000+460000\)
\(\Leftrightarrow Q=615600J\)
nếu bỏ cục nước đá vào nước thì phương trình cân bằng nhiệt là:
Qtỏa=Qthu
\(\Leftrightarrow Q_n+Q_{nh}=Q_{nđ}\)
\(\Leftrightarrow Q_2+Q_3=Q_1\)
\(\Leftrightarrow m_2C_2\left(t_2-t\right)+m_3C_3\left(t_3-t\right)=m_1C_1\left(t-t_1\right)+\left(m_1-0,05\right)\lambda\)
\(\Leftrightarrow4200m_2\left(20-0\right)+88\left(20-0\right)=360\left(0--10\right)+3,4.10^5\left(0,2-0,05\right)\)
\(\Leftrightarrow84000m_2+1760=54600\)
\(\Rightarrow m_2=0,63kg\)
chú ý ở câu b:
nhiệt độ cân bằng là 0 vì nước đá chưa tan hết.
khối lượng nhân cho lamđa phải trừ đi cho phần chưa tan hết
chúc bạn thành công nhé
a, Nhiệt lượng nước đá cần để tan hết :
\(\text{Q1=m1.c1(t−t1)+m1λ=33600+537600=571200(J)}\)
Nhiệt lượng nước và bình toả ra :
\(\text{Qt=Q2+Q3=m2.c2(t2−t)+m3.c3.(t3−t)=537600+6080=543680}\)
Vì Q1 > Q t nên nước đá không tan hết .
b, Nhiệt độ cuối cùng là 0 độ .
a, Nhiệt lượng nước đá cần để tan hết :
\(Q_1=m_1.c_1\left(t-t_1\right)+m_1\lambda=33600+537600=571200\left(J\right)\)
Nhiệt lượng nước và bình toả ra :
\(Q_t=Q_2+Q_3=m_2.c_2\left(t_2-t\right)+m_3.c_3.\left(t_3-t\right)=537600+6080=543680\)
Vì Q1 > Q t nên nước đá không tan hết .
b, Nhiệt độ cuối cùng là 0 độ .
TK: trích từ "https://hoidapvietjack.com/q/10719/mot-thau-nhom-khoi-luong-02kg-dung-3kg-nuoc-o-300c-tha-vao"
- Gọi t°C là nhiệt độ củ bếp lò, cũng là nhiệt độ ban đầu của thỏi đồng
- Nhiệt lượng thau nhôm nhận được để tăng từ t1 = 30°C đến t2 = 32°Ct1 = 30°C đến t2 = 32°C
Q1 = m1.c1.(t2 − t1)Q1 = m1.c1.(t2 - t1)= 0,2.880.2 = 352 (J)
- Nhiệt lượng nước nhận được để tăng từ t1 = 30°C đến t2 = 32°Ct1 = 30°C đến t2 = 32°C
Q2 = m2.c2.(t2 − t1)Q2 = m2.c2.(t2 - t1) = 3.4200.2 = 25200 (J)
- Nhiệt lượng đồng toả ra để hạ từ t°C đến t2t2 = 32°C
Q3 = m3.c3.(t − t2)Q3 = m3.c3.(t - t2) ( khối lượng thỏi đồng)
- Do có sự toả nhiệt ra môi trường nên phương trình cân bằng nhiệt là:
- Nhiệt độ của thỏi đồng là:
Đáp số: 401,8°C
Tóm tắt
m1 = 2kg ; t1 = -10oC
c1 = 2000J/kg.K
\(\lambda\) = 340000J/kg
m2 = 2,4kg ; t2 = 60oC
c2 = 4200J/kg.K
m3 = 200g = 0,2kg
c3 = 880J/kg.K
b) t = ?
Giải
a) Nhiệt lượng nước đá cần thu vào để tăng nhiệt độ từ t1 = -10oC lên nhiệt độ nóng chảy 0oC là:
\(Q_1=m_1.c_1\left(0-t_1\right)=2.2000.10=40000\left(J\right)\)
Nhiệt lượng nước đá cần thu vào để nóng chảy hoàn toàn thành nước lỏng ở 0oC là:
\(Q_2=m_1.\lambda=2.340000=680000\left(J\right)\)
Nhiệt lượng nhiệt lượng kế và nước trong đó tỏa ra khi hạ nhiệt độ từ t2 = 60oC xuống 0oC là:
\(Q_3=\left(m_2.c_2+m_3.c_3\right)\left(t_2-0\right)=\left(2,4.4200+0,2.880\right)60=615360\left(J\right)\)
Ta thấy \(Q_1+Q_2>Q_3\) nên nhiệt lượng nhiệt lượng kế và nước trong đó tỏa ra không đủ để làm nước đá nóng chảy hoàn toàn nên nước đá chưa tan hết.
b) Tuy nhiệt lượng nhiệt lượng kế và nước trong đó tỏa ra không đủ để làm nước đá nóng chảy hoàn nhưng đủ để làm nước đá nóng đến 0oC (do Q1 < Q3) nên nhiệt độ cân bằng hay nhiệt độ cuối cùng của nhiệt lượng kế là 0oC.
Tóm tắt:
\(m_1=500g=0,5kg\)
\(t_1=150^oC\)
\(t=50^oC\)
\(V=1l\Rightarrow m_2=1kg\)
\(t_2=20^oC\)
\(\Rightarrow\Delta t_1=t_1-t=150-50=100^oC\)
\(\Rightarrow\Delta t_2=t-t_2=50-20=30^oC\)
\(c_1=880J/kg.K\)
\(c_2=4200J/kg.K\)
==============
a) \(t=?^oC\)
b) \(m_2=?kg\)
c) \(t_{cb_2}=?^oC\)
a) Nhiệt độ của thỏi nhôm sau khi được cân bằng là \(t=50^oC\)
b) Khối lượng nước có trong cốc là \(m_2=1kg\)
c) Do nhiệt lượng của nước sôi tỏa ra bằng nhiệt lượng mà nước thu vào nên ta có phương trình cân bằng nhiệt:
\(Q_2=Q_3\)
\(\Leftrightarrow m_2.c_2.\Delta t_2=m_3.c_2.\Delta t_3\)
\(\Leftrightarrow1.4200.\left(t_{cb_2}-50\right)=0,35.4200.\left(100-t_{cb_2}\right)\)
\(\Leftrightarrow4200t_{cb_2}-210000=147000-1470t_{cb_2}\)
\(\Leftrightarrow4200t_{cb_2}+1470t_{cb_2}=147000+210000\)
\(\Leftrightarrow5670t_{cb_2}=357000\)
\(\Leftrightarrow t_{cb_2}=\dfrac{357000}{5670}\approx63^oC\)
Đáp án: C
- Nhiệt lượng cần cung cấp cho 1,6kg nước đá thu vào để tăng nhiệt độ từ - 10 0 C lên 0 0 C :
- Nhiệt lượng nước đá thu vào để nóng chảy hoàn hoàn ở 0 0 C
- Nhiệt lượng do 2kg nước toả ra để hạ nhiệt độ từ 50 0 C đến 0 0 C
- Nhiệt lượng do nhiệt lượng kế bằng nhôm toả ra để hạ nhiệt độ từ 80 0 C xuống tới 0 0 C
- Ta có:
- Vì Q t h u > Q toả chứng tỏ nước đá chưa tan hết
- Nhiệt độ cuối cùng của hỗn hợp nước và nước đá cũng chính là nhiệt độ cuối cùng của nhiệt lượng kế và bằng 0 0 C