K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x^4+8x\\ =x\left(x^3+8\right)\\ =x\left(x+2\right)\left(x^2-2x+4\right)\)

Vậy: Chọn D

4 tháng 8 2017

a )\(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)

\(=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)

b )\(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+2x+2\right)\left(x^2-2\right)\)

c ) \(x^2\left(1-x^2\right)-4-4x^2=x^2-x^4-4-4x^2\)

\(=x^2-\left(x^2+2\right)^2=\left(x-x^2-2\right)\left(x^2+x+2\right)\)

4 tháng 8 2017

a.x2-2x-4y2-4y=(x2-4y2)-(2x+4y)=(x-2y)(x+2y)-2(x+2y)=(x+2y)(x-2y-2)

b.x4+2x3-4x-4=(x4-4)+(2x3-4x)=(x2-2)(x2+2)+2x(x2-2)=(x2-2)(x2+2x+2)

c.x2(1-x2)-4-4x2= -x4-3x2-4=x2-(x4+4x2+4)=x2-(x2+2)2=(x-x2-2)(x+x2+2)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

1 tháng 11 2018

\(a,4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^3-x\right)\)

\(=x\left(x+1\right)\left(4x^2-1\right)\)

\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)

3 tháng 8 2020

a,(x-y)^2-2(x+y)+1   b, x^2-y^2+4x+4         c, 4x^2-y^2+8(y-2)

=(x-y-1)^2                  =(x^2+4x+4)-y^2        =4x^2-y^2+8y-16

                                  =(x+2)^2-y^2              =4x^2-(y^2-8y+16)

                                  =(x+2-y)(x+2+y)         =4x^2-(y-4)^2

                                                                        

3 tháng 8 2020

a) (x+y)2-2(x+y)+1=(x+y-1)2

b) x2-y2+4x+4 = (x2+4x+4)-y2=(x+2)2-y2=(x+y+2)(x-y+2)

c)4x2-y2+8(y-2) = 4x2-(y2-8y+16) = (2x)2-(y-4)2=(2x+y-4)(2x-y+4)

d)x3-2x2+2x-4 = x2(x-2)+2(x-2) = (x-2)(x2+2)

e)xy-4+2x-2y=x(y+2) - 2(y+2) = (x-2)(y+2)

31 tháng 1 2018

a)   \(x^5-2x^4+3x^3-4x^2+2\)

\(=x^5-x^4-x^4+x^3+2x^3-2x^2-2x^2+2\)

\(=x^4\left(x-1\right)-x^3\left(x-1\right)+2x^2\left(x-1\right)-2\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^4-x^3+2x^2-2x-2\right)\)

b)    \(x^4+1997x^2+1996x+1997\)

\(=\left(x^4+x^2+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

c)   \(x^8+x^4+1\)

\(=x^8+2x^4+1-x^4\)

\(=\left(x^4+1\right)-x^4\)

\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

c)   \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)