Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy M tùy ý. Gọi (M) = M', (M') = M''. Ta có
\(\overrightarrow{MM'}=\overrightarrow{MM'}+\overrightarrow{M'M''}=2\overrightarrow{M_oM'}+2\overrightarrow{M'M_1}=2\overrightarrow{M_oM_1}\)\(=2\dfrac{\overrightarrow{v}}{2}=\overrightarrow{v}\).
Vậy M'' = (M) = ((M)), với mọi M
Do đó phép tịnh tiến theo vectơ v là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d'.
a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)
c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.
a) Giả sử A'=(x'; y'). Khi đó
(A) = A' ⇔
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có A = (C) ⇔ C= (A) = (4;3)
c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8
Câu 1:
Lấy $M(x,y)\in (d)$. $M'(x',y')=T_{\overrightarrow{v}}(M)$
\(\left\{\begin{matrix} x'-x=2\\ y'-y=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'-2\\ y=y'+1\end{matrix}\right.\)
Ảnh của $d$ qua phép tịnh tiến theo vecto $\overrightarrow{v}$ có dạng:
$3(x'-2)-2(y'+1)+1=0$
$\Leftrightarrow 3x'-2y'-7=0$
Câu 2:
$M(x,y)$ là 1 điểm thuộc đường tròn $(C)$.
Lấy $M'(x',y')$ là 1 điểm thuộc $(C')$ là ảnh của $(C)$ qua $\overrightarrow{v}$
Khi đó, $M'=T_{\overrightarrow{v}}(M)
\(\Rightarrow \left\{\begin{matrix} x'-x=-3\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+3\\ y=y'-5\end{matrix}\right.\)
PTĐTr $(C')$ có dạng:
$(x'+3)^2+(y'-5)^2-4(x'+3)+6(y'-5)+5=0$
$\Leftrightarrow x'^2+y'^2+2x'-4y'-3=0$
- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: \(\overrightarrow{AG}=\overrightarrow{BB'}=\overrightarrow{CC'}\)
. Suy ra \(^T\overrightarrow{AG}\left(A\right)=G,^T\overrightarrow{AG}\left(B\right)=B',^T\overrightarrow{AG}\left(C\right)=C'\)
Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) là tam giác GB'C'.
- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có \(\overrightarrow{DA}=\overrightarrow{AG}\). Do đó, \(^T\overrightarrow{AG}\left(D\right)=A\).
- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: −−→AG=−−→BB′=−−→CC′AG→=BB′→=CC′→
. Suy ra T−−→AG(A)=G,T−−→AG(B)=B′,T−−→AG(C)=C′TAG→(A)=G,TAG→(B)=B′,TAG→(C)=C′
Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ −−→AGAG→ là tam giác GB'C'.
- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có −−→DA=−−→AGDA→=AG→. Do đó, T−−→AG(D)=ATAG→(D)=A.
\(T_{\overrightarrow{v}}\left(N\right)=M\Rightarrow\overrightarrow{v}=\overrightarrow{NM}=\left(-5;1\right)\)
\(\Rightarrow2\overrightarrow{v}=\left(-10;2\right)\Rightarrow\left\{{}\begin{matrix}x_P=-4+-10=-14\\y_P=1+2=3\end{matrix}\right.\)
\(\Rightarrow P\left(-14;3\right)\)
Gọi M′ ( x′ ; y′ ) ∈ d' là ảnh của M( x , y ) ∈ d qua phép tịnh tiến theo vecto ⃗v (2;3)
\(\Rightarrow\left\{{}\begin{matrix}x'=x+2\\y'=y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-3\end{matrix}\right.\)
do M (x' ; y') \(\in\) d nên
\(3x-5y+3=0\)
\(\Rightarrow3\left(x'-2\right)-5\left(y'-3\right)+3=0\)
\(\Leftrightarrow3x'-5y'+12=0\left(d'\right)\)
vậy \(M'\left(x';y'\right)\in d':3x'-5y'+12=0\)
Lấy 2 điểm A và B thuộc đường thẳng d
Lần lượt thực hiện phép tịnh tiến A, B theo vecto v→ ta được 2 điểm A’và B’
Đường thẳng đi qua 2 điểm A’ và B’là đường thẳng d’ hay d’là ảnh của đường thẳng d