Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Fhd= Fht
\(\Rightarrow\)G=mM(R+h)2=mv2R+h
\(\Rightarrow\)G=mM(R+h)2=mv2R+h
\(\Rightarrow\)v=√mMR+h
\(\Rightarrow\)v=mMR+h khi h = R
⇒v=√GM2R
\(\Rightarrow\)v=GM2R (1)
Mặt khác do:
g=GMR2\(\Leftrightarrow\)gR2=G.MTĐg=GMR2\(\Leftrightarrow\)gR2=G.MTĐ (2)
Từ (1) và (2) ⇒v=√g.R22R=√gR2=√10.64.1052
\(\Rightarrow\)v=g.R22R=gR2=10.64.1052
\(\Rightarrow\)v=√32.106⇒v=32.106 = 5,656.103m/s
+ Chu kì \(T=\dfrac{2\pi}{\omega}\)
Mà v = ω (R + h)
\(\Rightarrow\)T=2πv(R+h)⇒T=2πv(R+h)
\(\Rightarrow\)T=2π(R+h)v=4\(\pi\)Rv
\(\Rightarrow\)T=2\(\pi\)(R+h)v=4\(\pi\)Rv
\(\Rightarrow\)T=4.3,14.6400.103/ 5,656.103
\(\Rightarrow\)T=4.3,14.6400.1035,656.103 = 14,212,16s
\(\Rightarrow\)T \(\approx\)14,212 (s)
Lực hấp dẫn đóng vai trò là lực hướng tâm.
\(F_{hd}=F_{ht}\)\(\Rightarrow G\cdot\dfrac{M\cdot m}{\left(R+R\right)^2}=\dfrac{mv^2}{R}\)
\(\Rightarrow v=\sqrt{\dfrac{G\cdot M}{2R}}\)
Mà gia tốc tại mặt đất:
\(g=\dfrac{GM}{R^2}=9,8\)m/s2\(\Rightarrow\dfrac{1}{4}mg=\dfrac{mv^2}{2R}\Rightarrow v=\sqrt{\dfrac{R\cdot g}{2}}=\sqrt{\dfrac{6400\cdot1000\cdot9,8}{2}}=5600\)m/s
Gọi m, M là khối lượng của vệ tinh và của Trái Đất. Khi vệ tinh bay ở độ cao h, lực hấp dẫn giữa Trái Đất và vệ tinh là:
Đáp án B
Lực hấp dẫn đóng vai trò là lực hướng tâm F h t = F h d
Lực hấp dẫn giữa vệ tinh và Trái Đất đóng vai trò là lực hướng tâm, ta có: Fhd = Fht
(Bán kính quỹ đạo tròn của vệ tinh từ vệ tinh đến tâm Trái Đất: R + h)
Mặt khác:
(M là khối lượng trái đất)