Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:
d(I; d) = R
Ta có : R = d(I; d) = =
Phương trình đường tròn cần tìm là:
(x +1)2 + (y – 2)2 = =>( x +1)2 + (y – 2)2 =
<=> 5x2 + 5y2 +10x – 20y +21 = 0
Vì đường tròn cần tìm tiếp xúc với hai trục tọa độ nên các tọa độ xI ,yI của tâm I có thể là xI = yI hoặc xI = -yI
Đặt xI = a thì ta có hai trường hợp I(a ; a) hoặc I(-a ; a). Ta có hai khả năng:
Vì I nằm trên đường thẳng 4x – 2y – 8 = 0 nên với I(a ; a) ta có:
4a – 2a – 8 = 0 => a = 4
Đường tròn cần tìm có tâm I(4; 4) và bán kính R = 4 có phương trình:
(x – 4 )2 + (y – 4)2 = 42
x2 + y2 – 8x – 8y + 16 = 0
+ Trường hợp I(-a; a):
-4a – 2a – 8 = 0 => a =
Ta được đường tròn có phương trình:
+ =
Đường thẳng 4x-2y-8=0 chuyển về dạng tham số ta được
x=t
y=2t-4
Gọi I(t; 2t-4) thuộc đthẳng
Do đường tròn tiếp xúc với 2 trục tọa độ lên khoảng cách đến 2 trục là = nhau
-->t=2t-4
t=4
Vậy đường tròn có dạng : (x-4)^2 + (y-4)^2 = 16
Vì đường tròn cần tìm tiếp xúc với hai trục tọa độ nên các tọa độ xI ,yI của tâm I có thể là xI = yI hoặc xI = -yI
Đặt xI = a thì ta có hai trường hợp I(a ; a) hoặc I(-a ; a). Ta có hai khả năng:
Vì I nằm trên đường thẳng 4x – 2y – 8 = 0 nên với I(a ; a) ta có:
4a – 2a – 8 = 0 => a = 4
Đường tròn cần tìm có tâm I(4; 4) và bán kính R = 4 có phương trình:
(x - 4 )2 + (y – 4)2 = 42
x2 + y2 - 8x – 8y + 16 = 0
+ Trường hợp I(-a; a):
-4a - 2a - 8 = 0 => a =
Ta được đường tròn có phương trình:
+ =
o a b I x y
gọi pt đường trọng cần tìm là: \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\left(C\right)\)
với I(a; b)
(C) tiếp xúc với 2 trục tọa độ \(\Rightarrow a=b=R\Rightarrow\left(C\right)\)co dang \(\left(x-a\right)^2+\left(y-a\right)^2=a^2\left(1\right)\)
lại có I(a;b) \(\in\) 4x-2y-8=0 \(\Rightarrow4a-2a-8=0\Rightarrow a=4\)
thay a = 4 vao (1) \(\Rightarrow\left(C\right)\left(x-4\right)^2+\left(y-4\right)^2=16\)
Giả sử đường tròn cần lập có tâm O; bán kính R.
Đường thẳng Δ đi qua M(2; -2) và có VTPT là n→(4; 3) nên đường thẳng này có 1 VTCP là u→(3; -4) . Phương trình tham số của đường thẳng Δ là:
O nằm trên Δ ⇒ O(2 + 3t; -2 – 4t)
Đường tròn (O; R) tiếp xúc với d1 và d2 ⇒ d(O; d1) = d(O; d2) = R
Ta có: d(O; d1) = d(O; d2)
+ Với t = 0 ⇒ O(2; -2) ⇒ R = d(O; d1) = 2√2
Phương trình đường tròn: (x – 2)2 + (y + 2)2 = 8.
+ Với t = -2 ⇒ O(-4; 6) , R = d(O; d1) = 3√2
Phương trình đường tròn: (x + 4)2 + (y – 6)2 = 18
Vậy có hai phương trình đường tròn thỏa mãn là:
(x – 2)2 + (y + 2)2 = 8 hoặc (x + 4)2 + (y – 6)2 = 18