K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Với 0 ° < α < 90 °  ta có α tăng thì tg  α  tăng

Ta có:  50 ° 28 '  <  63 ° , suy ra tg 50 ° 28 '  < tg 63 °

26 tháng 4 2019

9 tháng 3 2017

30 tháng 7 2018

Với  0 ° < α < 90 °  ta có  α  tăng thì tg  α  tăng

Ta có:  27 ° +  63 °  =  90 ° , suy ra: cotg 27 °  = tg 63 °

Vì  27 ° < 63 °  nên tg 27 °  < tg 63 °  hay tg 27 °  < cotg 27 °

17 tháng 6 2017

Với  0 ° < α < 90 °  ta có  α  tăng thì cotg  α  giảm

Ta có:  65 °  +  25 °  =  90 ° , suy ra: tg 65 °  = cotg 25 °

Vì  25 °  <  65 °  nên cotg 25 °  > cotg 65 °  hay tg 65 °  > cotg 65 °

a) tg28=sin28cos28=sin28.1cos28tg28∘=sin⁡28∘cos⁡28∘=sin⁡28∘.1cos⁡28∘ (1)

Vì 0 < cos28° < 1 nên 1cos28>1sin28.1cos28>sin281cos⁡28∘>1⇒sin⁡28∘.1cos⁡28∘>sin⁡28∘ (2)

Từ (1) và (2) suy ra: tg28° > sin28°

b) Ta có: cotg42=cos42sin42=cos42.1sin42cot⁡g42∘=cos⁡42∘sin⁡42∘=cos42∘.1sin⁡42∘ (1)

Vì 0 < sin42° < 1 nên 1sin42>1cos42.1sin42>cos421sin⁡42∘>1⇒cos⁡42∘.1sin⁡42∘>cos⁡42∘ (2)

Từ (1) và (2) suy ra: cotg42° > cos42°

c) Ta có: 17° +73° =90° (1)

cotg73=cos73sin73=cos73.1sin73cot⁡g73∘=cos⁡73∘sin⁡73∘=cos⁡73∘.1sin⁡73∘ (2)

Vì 0 <sin73° <1 nên 1sin73>1cos73.1sin73>cos731sin⁡73∘>1⇒cos73∘.1sin⁡73∘>cos73∘ (3)

Từ (1), (2) và (3) suy ra: cotg73° > sin17°

d) Ta có: 32° +58° = 90° (1)

tg32=sin32cos32=sin32.1cos32tg32∘=sin⁡32∘cos⁡32∘=sin⁡32∘.1cos⁡32∘ (2)

Vì 0 < cos32° < 1 nên 1cos32>1sin32.1cos32>sin321cos32∘>1⇒sin⁡32∘.1cos32∘>sin⁡32∘ (3)

Từ (1), (2) và (3) suy ra: tg32° > cos58°

a: \(\tan50^028'< \tan63^0\)

b: \(\cot14^0>\cot35^012'\)

c: \(\tan27^0=\cot63^0< \cot27^0\)

d: \(\tan65^0=\cot25^0>\cot65^0\)

a: \(\sin25^0< \sin70^0\)

b: \(\cos40^0>\cos75^0\)

c: \(\sin38^0=\cos52^0< \cos27^0\)

d: \(\sin50^0=\cos40^0>\cos50^0\)

24 tháng 4 2017

ĐS: a) x20x≈20∘;

b) x57x≈57∘;

c) x57x≈57∘;

d) x18x≈18∘.

24 tháng 4 2017

a) x20x≈20∘;

b) x57x≈57∘;

c) x57x≈57∘;

d) x18x≈18∘.

23 tháng 4 2017

Đặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B

23 tháng 4 2017

Ta có: \(2\sqrt{2003.2005}=2\sqrt{2004^2-1}< 2\sqrt{2004^2}\)

\(\Rightarrow\) 2003 + \(2\sqrt{2003.2005}+2005\) < 2003 + 4008 + 2005

hay \(\left(\sqrt{2003}+\sqrt{2005}\right)^2< 8016\)

\(\Rightarrow\) \(\sqrt{2003}+\sqrt{2005}\) < 2 \(\sqrt{2004}\)