K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

khong biet

24 tháng 10 2018

tui đếch bt vì tui mới hk lớp 5  thôi à

12 tháng 8 2019

a, \(9x^3y^2-15x^2y^3=3x^2y^2\cdot\left(3x-5y\right)\)

b,\(25x^2-49y^2=\left(5x\right)^2-\left(7y\right)^2\)

                            \(=\left(5x-7y\right)\cdot\left(5x+7y\right)\)

c,\(x^2y-xy^2-7x+7y=\left(x^2y-xy^2\right)-\left(7x-7y\right)\)

                                            \(=xy\left(x-y\right)-7\left(x-y\right)\)

                                          ,\(=\left(x-y\right)\cdot\left(xy-7\right)\)

 d,  \(x^2-2xy+y^2-9z^2=\left(x^2-2xy+y^2\right)-9z^2\)    

                                              \(=\left(x-y\right)^2-9z^2\)   

                                               \(=\left(x-y+3z\right)\cdot\left(x-y-3z\right)\)                                

13 tháng 8 2019

f) \(x^4-5x^2+4\)

\(=x^4-x^2-4x^2+4\)

\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)

\(=\left(x^2-4\right)\left(x^2-1\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-1\right)\left(x+1\right)\)

a) Ta có: \(x^2+9x+20\)

\(=x^2+4x+5x+20\)

\(=x\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+4\right)\left(x+5\right)\)

b) Ta có: \(x^2+x-12\)

\(=x^2+4x-3x-12\)

\(=x\left(x+4\right)-3\left(x+4\right)\)

\(=\left(x+4\right)\left(x-3\right)\)

c) Ta có: \(6x^2-11x-16\)

\(=6\left(x^2-\frac{11}{6}x-\frac{16}{6}\right)\)

\(=6\left(x^2-2\cdot x\cdot\frac{11}{12}+\frac{121}{144}-\frac{505}{144}\right)\)

\(=6\left[\left(x-\frac{11}{12}\right)^2-\frac{505}{144}\right]\)

\(=6\left(x-\frac{11+\sqrt{505}}{12}\right)\left(x-\frac{11-\sqrt{505}}{12}\right)\)

d) Ta có: \(4x^2-8x-5\)

\(=4x^2-10x+2x-5\)

\(=2x\left(2x-5\right)+\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x+1\right)\)

e) Ta có: \(x^3-6x^2-x+30\)

\(=x^3+2x^2-8x^2-16x+15x+30\)

\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-8x+15\right)\)

\(=\left(x+2\right)\left(x^2-3x-5x+15\right)\)

\(=\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]\)

\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)

g) Ta có: \(x^3+9x^2+23x+15\)

\(=x^3+x^2+8x^2+8x+15x+15\)

\(=x^2\left(x+1\right)+8x\left(x+1\right)+15\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+8x+15\right)\)

\(=\left(x+1\right)\left(x^2+3x+5x+15\right)\)

\(=\left(x+1\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)

\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

h) Ta có: \(2x^4-x^3-9x^2+13x\)

\(=x\left(2x^3-x^2-9x+13\right)\)

i) Ta có: \(x^4+2x^3-16x^2-2x+15\)

\(=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\)

\(=x^3\left(x-3\right)+5x^2\left(x-3\right)-x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x^3+5x^2-x-5\right)\)

\(=\left(x-3\right)\left[x^2\left(x+5\right)-\left(x+5\right)\right]\)

\(=\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\)

\(=\left(x-3\right)\left(x+5\right)\left(x-1\right)\left(x+1\right)\)

18 tháng 4 2017

1.

\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\left(ĐKXĐ:x\ne1\right)\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\ \Leftrightarrow21x-9=2x-2\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\dfrac{7}{19}\left(TMĐK\right)\)

2.

\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\left(ĐKXĐ:x\ne-\dfrac{2}{3};x\ne\dfrac{1}{3}\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\\ \Leftrightarrow-8x+1=-11x-14\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\left(TMĐK\right)\)

3.

\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ \Leftrightarrow\left(\dfrac{1-x}{x+1}+3\right)\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}.\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{4+2x}{x+1}\left(x+1\right)=2x+3\\ \Leftrightarrow4+2x=2x+3\\ \Leftrightarrow4=3\)

Vô nghiệm.

21 tháng 7 2018

\(x^2-4y^2+4y-1=x^2-\left(2y-1\right)^2=\left(x+2y-1\right)\left(x-2y+1\right)\)

21 tháng 7 2018

\(x^4+3x^3-9x-9\)

\(=x^4-9+3x^3-9x\)

\(=\left(x^2-3\right)\left(x^2+3\right)+3x\left(x^2-3\right)\)

\(=\left(x^2-3\right)\left(x^2+3+3x\right)\)

18 tháng 4 2017

\(1.\frac{7x-3}{x-1}=\frac{2}{3}\)   ( \(x\ne1\))

\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)

\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\frac{7}{19}\)

\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)

\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)

\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)

\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)

\(\Leftrightarrow3x=-15\)

\(\Leftrightarrow x=-5\)

\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)

\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)

\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)

\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)

\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)

\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)

\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)

\(\Leftrightarrow4x^2+5x-7=0\)

\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)

\(\left(2x+\frac{5}{4}\right)^2>0\)

\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)

=> PT vô nghiệm 

\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)

\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)

\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)

\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)

\(\Leftrightarrow-23x-7=0\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=\frac{-7}{23}\)

\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)

\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)

\(\Leftrightarrow-6x+16=0\)

\(\Leftrightarrow-6x=-16\)

\(\Leftrightarrow x=\frac{16}{6}\)

\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)

\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)

\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)

\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)

\(\Leftrightarrow x^4+x^3-4x-8=0\)

\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)

Đến đấy mk tắc r xl bạn nhé